Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Algebra and Trigonometry

A | Proofs, Identities, and Toolkit Functions

Algebra and TrigonometryA | Proofs, Identities, and Toolkit Functions

Important Proofs and Derivations

Product Rule

log a xy= log a x+ log a y log a xy= log a x+ log a y

Proof:

Let m= log a x m= log a x and n= log a y. n= log a y.

Write in exponent form.

x= a m x= a m and y= a n . y= a n .

Multiply.

xy= a m a n = a m+n xy= a m a n = a m+n

a m+n = xy log a (xy) = m+n = log a x+ log b y a m+n = xy log a (xy) = m+n = log a x+ log b y

Change of Base Rule

log a b= log c b log c a log a b= 1 log b a log a b= log c b log c a log a b= 1 log b a

where x x and y y are positive, and a>0,a1. a>0,a1.

Proof:

Let x= log a b. x= log a b.

Write in exponent form.

a x =b a x =b

Take the log c log c of both sides.

log c a x = log c b x log c a = log c b x = log c b log c a log a b = log c b log c a log c a x = log c b x log c a = log c b x = log c b log c a log a b = log c b log c a

When c=b, c=b,

log a b= log b b log b a = 1 log b a log a b= log b b log b a = 1 log b a

Heron’s Formula

A= s( sa )( sb )( sc ) A= s( sa )( sb )( sc )

where s= a+b+c 2 s= a+b+c 2

Proof:

Let a, a, b, b, and c c be the sides of a triangle, and h h be the height.

A triangle with sides labeled: a, b and c.  A line runs through the center of the triangle, bisecting the top angle; this line is labeled: h.

So s= a+b+c 2 s= a+b+c 2 .

We can further name the parts of the base in each triangle established by the height such that p+q=c. p+q=c.

A triangle with sides labeled: a, b, and c.  A line runs through the center of the triangle bisecting the angle at the top; this line is labeled: h. The two new line segments on the base of the triangle are labeled: p and q.

Using the Pythagorean Theorem, h 2 + p 2 = a 2 h 2 + p 2 = a 2 and h 2 + q 2 = b 2 . h 2 + q 2 = b 2 .

Since q=cp, q=cp, then q 2 = ( cp ) 2 . q 2 = ( cp ) 2 . Expanding, we find that q 2 = c 2 2cp+ p 2 . q 2 = c 2 2cp+ p 2 .

We can then add h 2 h 2 to each side of the equation to get h 2 + q 2 = h 2 + c 2 2cp+ p 2 . h 2 + q 2 = h 2 + c 2 2cp+ p 2 .

Substitute this result into the equation h 2 + q 2 = b 2 h 2 + q 2 = b 2 yields b 2 = h 2 + c 2 2cp+ p 2 . b 2 = h 2 + c 2 2cp+ p 2 .

Then replacing h 2 + p 2 h 2 + p 2 with a 2 a 2 gives b 2 = a 2 2cp+ c 2 . b 2 = a 2 2cp+ c 2 .

Solve for p p to get

p= a 2 + b 2 c 2 2c p= a 2 + b 2 c 2 2c

Since h 2 = a 2 p 2 , h 2 = a 2 p 2 , we get an expression in terms of a, a, b, b, and c. c.

h 2 = a 2 p 2 = (a+p)(ap) = [ a+ ( a 2 + c 2 b 2 ) 2c ][ a ( a 2 + c 2 b 2 ) 2c ] = ( 2ac+ a 2 + c 2 b 2 )( 2ac a 2 c 2 + b 2 ) 4 c 2 = ( (a+c) 2 b 2 )( b 2 (ac) 2 ) 4 c 2 = (a+b+c)(a+cb)(b+ac)(ba+c) 4 c 2 = (a+b+c)(a+b+c)(ab+c)(a+bc) 4 c 2 = 2s(2sa)(2sb)(2sc) 4 c 2 h 2 = a 2 p 2 = (a+p)(ap) = [ a+ ( a 2 + c 2 b 2 ) 2c ][ a ( a 2 + c 2 b 2 ) 2c ] = ( 2ac+ a 2 + c 2 b 2 )( 2ac a 2 c 2 + b 2 ) 4 c 2 = ( (a+c) 2 b 2 )( b 2 (ac) 2 ) 4 c 2 = (a+b+c)(a+cb)(b+ac)(ba+c) 4 c 2 = (a+b+c)(a+b+c)(ab+c)(a+bc) 4 c 2 = 2s(2sa)(2sb)(2sc) 4 c 2

Therefore,

h 2 = 4s(sa)(sb)(sc) c 2 h = 2 s(sa)(sb)(sc) c h 2 = 4s(sa)(sb)(sc) c 2 h = 2 s(sa)(sb)(sc) c

And since A= 1 2 ch, A= 1 2 ch, then

A = 1 2 c 2 s(sa)(sb)(sc) c = s(sa)(sb)(sc) A = 1 2 c 2 s(sa)(sb)(sc) c = s(sa)(sb)(sc)

Properties of the Dot Product

u·v=v·u u·v=v·u

Proof:

u·v = u 1 , u 2 ,... u n · v 1 , v 2 ,... v n = u 1 v 1 + u 2 v 2 +...+ u n v n = v 1 u 1 + v 2 u 2 +...+ v n v n = v 1 , v 2 ,... v n · u 1 , u 2 ,... u n =v·u u·v = u 1 , u 2 ,... u n · v 1 , v 2 ,... v n = u 1 v 1 + u 2 v 2 +...+ u n v n = v 1 u 1 + v 2 u 2 +...+ v n v n = v 1 , v 2 ,... v n · u 1 , u 2 ,... u n =v·u

u·( v+w )=u·v+u·w u·( v+w )=u·v+u·w

Proof:

u·(v+w) = u 1 , u 2 ,... u n ·( v 1 , v 2 ,... v n + w 1 , w 2 ,... w n ) = u 1 , u 2 ,... u n · v 1 + w 1 , v 2 + w 2 ,... v n + w n = u 1 ( v 1 + w 1 ), u 2 ( v 2 + w 2 ),... u n ( v n + w n ) = u 1 v 1 + u 1 w 1 , u 2 v 2 + u 2 w 2 ,... u n v n + u n w n = u 1 v 1 , u 2 v 2 ,..., u n v n + u 1 w 1 , u 2 w 2 ,..., u n w n = u 1 , u 2 ,... u n · v 1 , v 2 ,... v n + u 1 , u 2 ,... u n · w 1 , w 2 ,... w n =u·v+u·w u·(v+w) = u 1 , u 2 ,... u n ·( v 1 , v 2 ,... v n + w 1 , w 2 ,... w n ) = u 1 , u 2 ,... u n · v 1 + w 1 , v 2 + w 2 ,... v n + w n = u 1 ( v 1 + w 1 ), u 2 ( v 2 + w 2 ),... u n ( v n + w n ) = u 1 v 1 + u 1 w 1 , u 2 v 2 + u 2 w 2 ,... u n v n + u n w n = u 1 v 1 , u 2 v 2 ,..., u n v n + u 1 w 1 , u 2 w 2 ,..., u n w n = u 1 , u 2 ,... u n · v 1 , v 2 ,... v n + u 1 , u 2 ,... u n · w 1 , w 2 ,... w n =u·v+u·w

u·u= | u | 2 u·u= | u | 2

Proof:

u·u = u 1 , u 2 ,... u n · u 1 , u 2 ,... u n = u 1 u 1 + u 2 u 2 +...+ u n u n = u 1 2 + u 2 2 +...+ u n 2 =| u 1 , u 2 ,... u n | 2 =v·u u·u = u 1 , u 2 ,... u n · u 1 , u 2 ,... u n = u 1 u 1 + u 2 u 2 +...+ u n u n = u 1 2 + u 2 2 +...+ u n 2 =| u 1 , u 2 ,... u n | 2 =v·u

Standard Form of the Ellipse centered at the Origin

1= x 2 a 2 + y 2 b 2 1= x 2 a 2 + y 2 b 2

Derivation

An ellipse consists of all the points for which the sum of distances from two foci is constant:

( x( c ) ) 2 + ( y0 ) 2 + ( xc ) 2 + ( y0 ) 2 =constant ( x( c ) ) 2 + ( y0 ) 2 + ( xc ) 2 + ( y0 ) 2 =constant

An ellipse centered at the origin on an x, y-coordinate plane.  Points C1 and C2 are plotted at the points (0, b) and (0, -b) respectively; these points appear on the ellipse.  Points V1 and V2 are plotted at the points (-a, 0) and (a, 0) respectively; these points appear on the ellipse.  Points F1 and F2 are plotted at the points (-c, 0) and (c, 0) respectively; these points appear on the x-axis, but not the ellipse. The point (x, y) appears on the ellipse in the first quadrant.  Dotted lines extend from F1 and F2 to the point (x, y).

Consider a vertex.

An ellipse centered at the origin.  The points C1 and C2 are plotted at the points (0, b) and (0, -b) respectively; these points are on the ellipse.  The points V1 and V2 are plotted at the points (-a, 0) and (a, 0) respectively; these points are on the ellipse.  The points F1 and F2 are plotted at the points (-c, 0) and (c, 0) respectively; these points are on the x-axis and not on the ellipse.  A line extends from the point F1 to a point (x, y) which is at the point (a, 0).  A line extends from the point F2 to the point (x, y) as well.

Then, ( x( c ) ) 2 + ( y0 ) 2 + ( xc ) 2 + ( y0 ) 2 =2a ( x( c ) ) 2 + ( y0 ) 2 + ( xc ) 2 + ( y0 ) 2 =2a

Consider a covertex.

An ellipse centered at the origin.  The points C1 and C2 are plotted at the points (0, b) and (0, -b) respectively; these points are on the ellipse.  The points V1 and V2 are plotted at the points (-a, 0) and (a, 0) respectively; these points are on the ellipse.  The points F1 and F2 are plotted at the points (-c, 0) and (c, 0) respectively; these points are on the x-axis and not on the ellipse.  There is a point (x, y) which is plotted at (0, b). A line extends from the origin to the point (c, 0), this line is labeled: c.  A line extends from the origin to the point (x, y), this line is labeled: b.  A line extends from the point (c, 0) to the point (x, y); this line is labeled: (1/2)(2a)=a.  A dotted line extends from the point (-c, 0) to the point (x, y); this line is labeled: (1/2)(2a)=a.

Then b 2 + c 2 = a 2 . b 2 + c 2 = a 2 .

(x(c)) 2 + (y0) 2 + (xc) 2 + (y0) 2 = 2a (x+c) 2 + y 2 = 2a (xc) 2 + y 2 (x+c) 2 + y 2 = ( 2a (xc) 2 + y 2 ) 2 x 2 +2cx+ c 2 + y 2 = 4 a 2 4a (xc) 2 + y 2 + (xc) 2 + y 2 x 2 +2cx+ c 2 + y 2 = 4 a 2 4a (xc) 2 + y 2 + x 2 2cx+ y 2 2cx = 4 a 2 4a (xc) 2 + y 2 2cx 4cx4 a 2 = 4a (xc) 2 + y 2 1 4a ( 4cx4 a 2 ) = (xc) 2 + y 2 a c a x = (xc) 2 + y 2 a 2 2xc+ c 2 a 2 x 2 = (xc) 2 + y 2 a 2 2xc+ c 2 a 2 x 2 = x 2 2xc+ c 2 + y 2 a 2 + c 2 a 2 x 2 = x 2 + c 2 + y 2 a 2 + c 2 a 2 x 2 = x 2 + c 2 + y 2 a 2 c 2 = x 2 c 2 a 2 x 2 + y 2 a 2 c 2 = x 2 ( 1 c 2 a 2 )+ y 2 (x(c)) 2 + (y0) 2 + (xc) 2 + (y0) 2 = 2a (x+c) 2 + y 2 = 2a (xc) 2 + y 2 (x+c) 2 + y 2 = ( 2a (xc) 2 + y 2 ) 2 x 2 +2cx+ c 2 + y 2 = 4 a 2 4a (xc) 2 + y 2 + (xc) 2 + y 2 x 2 +2cx+ c 2 + y 2 = 4 a 2 4a (xc) 2 + y 2 + x 2 2cx+ y 2 2cx = 4 a 2 4a (xc) 2 + y 2 2cx 4cx4 a 2 = 4a (xc) 2 + y 2 1 4a ( 4cx4 a 2 ) = (xc) 2 + y 2 a c a x = (xc) 2 + y 2 a 2 2xc+ c 2 a 2 x 2 = (xc) 2 + y 2 a 2 2xc+ c 2 a 2 x 2 = x 2 2xc+ c 2 + y 2 a 2 + c 2 a 2 x 2 = x 2 + c 2 + y 2 a 2 + c 2 a 2 x 2 = x 2 + c 2 + y 2 a 2 c 2 = x 2 c 2 a 2 x 2 + y 2 a 2 c 2 = x 2 ( 1 c 2 a 2 )+ y 2

Let 1= a 2 a 2 . 1= a 2 a 2 .

a 2 c 2 = x 2 ( a 2 c 2 a 2 )+ y 2 1 = x 2 a 2 + y 2 a 2 c 2 a 2 c 2 = x 2 ( a 2 c 2 a 2 )+ y 2 1 = x 2 a 2 + y 2 a 2 c 2

Because b 2 + c 2 = a 2 , b 2 + c 2 = a 2 , then b 2 = a 2 c 2 . b 2 = a 2 c 2 .

1 = x 2 a 2 + y 2 a 2 c 2 1 = x 2 a 2 + y 2 b 2 1 = x 2 a 2 + y 2 a 2 c 2 1 = x 2 a 2 + y 2 b 2

Standard Form of the Hyperbola

1= x 2 a 2 y 2 b 2 1= x 2 a 2 y 2 b 2

Derivation

A hyperbola is the set of all points in a plane such that the absolute value of the difference of the distances between two fixed points is constant.

Side-by-side graphs of hyperbole.  In Diagram 1: The foci F’ and F are labeled and can be found a little in front of the opening of the hyperbola.  A point P at (x,y) on the right curve is labeled.  A line extends from the F’ focus to the point P labeled: D1.  A line extends from the F focus to the point P labeled: D2.  In Diagram 2:  The foci F’ and F are labeled and can be found a little in front of the opening of the hyperbola.  A point V is labeled at the vertex of the right hyperbola.  A line extends from the F’ focus to the point V labeled: D1.  A line extends from the F focus to the point V labeled: D2.

Diagram 1: The difference of the distances from Point P to the foci is constant:

(x(c)) 2 + (y0) 2 (xc) 2 + (y0) 2 =constant (x(c)) 2 + (y0) 2 (xc) 2 + (y0) 2 =constant

Diagram 2: When the point is a vertex, the difference is 2a. 2a.

( x( c ) ) 2 + ( y0 ) 2 ( xc ) 2 + ( y0 ) 2 =2a ( x( c ) ) 2 + ( y0 ) 2 ( xc ) 2 + ( y0 ) 2 =2a

(x(c)) 2 + (y0) 2 (xc) 2 + (y0) 2 = 2a (x+c) 2 + y 2 (xc) 2 + y 2 = 2a (x+c) 2 + y 2 = 2a+ (xc) 2 + y 2 (x+c) 2 + y 2 = ( 2a+ (xc) 2 + y 2 ) x 2 +2cx+ c 2 + y 2 = 4 a 2 +4a (xc) 2 + y 2 x 2 +2cx+ c 2 + y 2 = 4 a 2 +4a (xc) 2 + y 2 + x 2 2cx+ y 2 2cx = 4 a 2 +4a (xc) 2 + y 2 2cx 4cx4 a 2 = 4a (xc) 2 + y 2 cx a 2 = a (xc) 2 + y 2 ( cx a 2 ) 2 = a 2 ( (xc) 2 + y 2 ) c 2 x 2 2 a 2 c 2 x 2 + a 4 = a 2 x 2 2 a 2 c 2 x 2 + a 2 c 2 + a 2 y 2 c 2 x 2 + a 4 = a 2 x 2 + a 2 c 2 + a 2 y 2 a 4 a 2 c 2 = a 2 x 2 c 2 x 2 + a 2 y 2 a 2 ( a 2 c 2 ) = ( a 2 c 2 ) x 2 + a 2 y 2 a 2 ( a 2 c 2 ) = ( c 2 a 2 ) x 2 a 2 y 2 (x(c)) 2 + (y0) 2 (xc) 2 + (y0) 2 = 2a (x+c) 2 + y 2 (xc) 2 + y 2 = 2a (x+c) 2 + y 2 = 2a+ (xc) 2 + y 2 (x+c) 2 + y 2 = ( 2a+ (xc) 2 + y 2 ) x 2 +2cx+ c 2 + y 2 = 4 a 2 +4a (xc) 2 + y 2 x 2 +2cx+ c 2 + y 2 = 4 a 2 +4a (xc) 2 + y 2 + x 2 2cx+ y 2 2cx = 4 a 2 +4a (xc) 2 + y 2 2cx 4cx4 a 2 = 4a (xc) 2 + y 2 cx a 2 = a (xc) 2 + y 2 ( cx a 2 ) 2 = a 2 ( (xc) 2 + y 2 ) c 2 x 2 2 a 2 c 2 x 2 + a 4 = a 2 x 2 2 a 2 c 2 x 2 + a 2 c 2 + a 2 y 2 c 2 x 2 + a 4 = a 2 x 2 + a 2 c 2 + a 2 y 2 a 4 a 2 c 2 = a 2 x 2 c 2 x 2 + a 2 y 2 a 2 ( a 2 c 2 ) = ( a 2 c 2 ) x 2 + a 2 y 2 a 2 ( a 2 c 2 ) = ( c 2 a 2 ) x 2 a 2 y 2

Define b b as a positive number such that b 2 = c 2 a 2 . b 2 = c 2 a 2 .

a 2 b 2 = b 2 x 2 a 2 y 2 a 2 b 2 a 2 b 2 = b 2 x 2 a 2 b 2 a 2 y 2 a 2 b 2 1 = x 2 a 2 y 2 b 2 a 2 b 2 = b 2 x 2 a 2 y 2 a 2 b 2 a 2 b 2 = b 2 x 2 a 2 b 2 a 2 y 2 a 2 b 2 1 = x 2 a 2 y 2 b 2

Trigonometric Identities

Pythagorean Identities cos 2 θ+ sin 2 θ=1 1+ tan 2 θ= sec 2 θ 1+ cot 2 θ= csc 2 θ cos 2 θ+ sin 2 θ=1 1+ tan 2 θ= sec 2 θ 1+ cot 2 θ= csc 2 θ
Even-Odd Identities cos(−θ)=cosθ sec(−θ)=secθ sin(−θ)=sinθ tan(−θ)=tanθ csc(−θ)=cscθ cot(−θ)=cotθ cos(−θ)=cosθ sec(−θ)=secθ sin(−θ)=sinθ tan(−θ)=tanθ csc(−θ)=cscθ cot(−θ)=cotθ
Cofunction Identities cosθ=sin( π 2 θ ) sinθ=cos( π 2 θ ) tanθ=cot( π 2 θ ) cotθ=tan( π 2 θ ) secθ=csc( π 2 θ ) cscθ=sec( π 2 θ ) cosθ=sin( π 2 θ ) sinθ=cos( π 2 θ ) tanθ=cot( π 2 θ ) cotθ=tan( π 2 θ ) secθ=csc( π 2 θ ) cscθ=sec( π 2 θ )
Fundamental Identities tanθ= sinθ cosθ secθ= 1 cosθ cscθ= 1 sinθ cotθ= 1 tanθ = cosθ sinθ tanθ= sinθ cosθ secθ= 1 cosθ cscθ= 1 sinθ cotθ= 1 tanθ = cosθ sinθ
Sum and Difference Identities cos(α+β)=cosαcosβsinαsinβ cos(αβ)=cosαcosβ+sinαsinβ sin(α+β)=sinαcosβ+cosαsinβ sin(αβ)=sinαcosβcosαsinβ tan(α+β)= tanα+tanβ 1tanαtanβ tan(αβ)= tanαtanβ 1+tanαtanβ cos(α+β)=cosαcosβsinαsinβ cos(αβ)=cosαcosβ+sinαsinβ sin(α+β)=sinαcosβ+cosαsinβ sin(αβ)=sinαcosβcosαsinβ tan(α+β)= tanα+tanβ 1tanαtanβ tan(αβ)= tanαtanβ 1+tanαtanβ
Double-Angle Formulas sin(2θ)=2sinθcosθ cos(2θ)= cos 2 θ sin 2 θ cos(2θ)=12 sin 2 θ cos(2θ)=2 cos 2 θ1 tan(2θ)= 2tanθ 1 tan 2 θ sin(2θ)=2sinθcosθ cos(2θ)= cos 2 θ sin 2 θ cos(2θ)=12 sin 2 θ cos(2θ)=2 cos 2 θ1 tan(2θ)= 2tanθ 1 tan 2 θ
Half-Angle Formulas sin α 2 =± 1cosα 2 cos α 2 =± 1+cosα 2 tan α 2 =± 1cosα 1+cosα tan α 2 = sinα 1+cosα tan α 2 = 1cosα sinα sin α 2 =± 1cosα 2 cos α 2 =± 1+cosα 2 tan α 2 =± 1cosα 1+cosα tan α 2 = sinα 1+cosα tan α 2 = 1cosα sinα
Reduction Formulas sin 2 θ= 1cos( 2θ ) 2 cos 2 θ= 1+cos( 2θ ) 2 tan 2 θ= 1cos( 2θ ) 1+cos( 2θ ) sin 2 θ= 1cos( 2θ ) 2 cos 2 θ= 1+cos( 2θ ) 2 tan 2 θ= 1cos( 2θ ) 1+cos( 2θ )
Product-to-Sum Formulas cosαcosβ= 1 2 [ cos(αβ)+cos(α+β) ] sinαcosβ= 1 2 [ sin(α+β)+sin(αβ) ] sinαsinβ= 1 2 [ cos(αβ)cos(α+β) ] cosαsinβ= 1 2 [ sin(α+β)sin(αβ) ] cosαcosβ= 1 2 [ cos(αβ)+cos(α+β) ] sinαcosβ= 1 2 [ sin(α+β)+sin(αβ) ] sinαsinβ= 1 2 [ cos(αβ)cos(α+β) ] cosαsinβ= 1 2 [ sin(α+β)sin(αβ) ]
Sum-to-Product Formulas sinα+sinβ=2sin( α+β 2 )cos( αβ 2 ) sinαsinβ=2sin( αβ 2 )cos( α+β 2 ) cosαcosβ=2sin( α+β 2 )sin( αβ 2 ) cosα+cosβ=2cos( α+β 2 )cos( αβ 2 ) sinα+sinβ=2sin( α+β 2 )cos( αβ 2 ) sinαsinβ=2sin( αβ 2 )cos( α+β 2 ) cosαcosβ=2sin( α+β 2 )sin( αβ 2 ) cosα+cosβ=2cos( α+β 2 )cos( αβ 2 )
Law of Sines sinα a = sinβ b = sinγ c a sinα = b sinβ = c sinγ sinα a = sinβ b = sinγ c a sinα = b sinβ = c sinγ
Law of Cosines a 2 = b 2 + c 2 2bccosα b 2 = a 2 + c 2 2accosβ c 2 = a 2 + b 2 2abcosγ a 2 = b 2 + c 2 2bccosα b 2 = a 2 + c 2 2accosβ c 2 = a 2 + b 2 2abcosγ
Table A1

ToolKit Functions

Three graphs side-by-side. From left to right, graph of the identify function, square function, and square root function. All three graphs extend from -4 to 4 on each axis.
Figure A1
Three graphs side-by-side. From left to right, graph of the cubic function, cube root function, and reciprocal function. All three graphs extend from -4 to 4 on each axis.
Figure A2
Three graphs side-by-side. From left to right, graph of the absolute value function, exponential function, and natural logarithm function. All three graphs extend from -4 to 4 on each axis.
Figure A3

Trigonometric Functions

Unit Circle

Graph of unit circle with angles in degrees, angles in radians, and points along the circle inscribed.
Figure A4
Angle 0 0 π 6 ,or 30° π 6 ,or 30° π 4 ,or 45° π 4 ,or 45° π 3 ,or 60° π 3 ,or 60° π 2 ,or 90° π 2 ,or 90°
Cosine 1 3 2 3 2 2 2 2 2 1 2 1 2 0
Sine 0 1 2 1 2 2 2 2 2 3 2 3 2 1
Tangent 0 3 3 3 3 1 3 3 Undefined
Secant 1 2 3 3 2 3 3 2 2 2 Undefined
Cosecant Undefined 2 2 2 2 3 3 2 3 3 1
Cotangent Undefined 3 3 1 3 3 3 3 0
Table A2
Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/algebra-and-trigonometry/pages/1-introduction-to-prerequisites
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/algebra-and-trigonometry/pages/1-introduction-to-prerequisites
Citation information

© Dec 8, 2021 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.