Skip to ContentGo to accessibility pageKeyboard shortcuts menu
Algebra and Trigonometry

# Review Exercises

Algebra and TrigonometryReview Exercises

## Real Numbers: Algebra Essentials

For the following exercises, perform the given operations.

1.

$( 5−3⋅2 ) 2 −6 ( 5−3⋅2 ) 2 −6$

2.

$64÷( 2⋅8 )+14÷7 64÷( 2⋅8 )+14÷7$

3.

$2⋅ 5 2 +6÷2 2⋅ 5 2 +6÷2$

For the following exercises, solve the equation.

4.

$5x+9=−11 5x+9=−11$

5.

$2y+ 4 2 =64 2y+ 4 2 =64$

For the following exercises, simplify the expression.

6.

$9( y+2 )÷3⋅2+1 9( y+2 )÷3⋅2+1$

7.

$3m( 4+7 )−m 3m( 4+7 )−m$

For the following exercises, identify the number as rational, irrational, whole, or natural. Choose the most descriptive answer.

8.

11

9.

0

10.

$5 6 5 6$

11.

$11 11$

## Exponents and Scientific Notation

For the following exercises, simplify the expression.

12.

$2 2 ⋅ 2 4 2 2 ⋅ 2 4$

13.

$4 5 4 3 4 5 4 3$

14.

$( a 2 b 3 ) 4 ( a 2 b 3 ) 4$

15.

$6 a 2 ⋅ a 0 2 a −4 6 a 2 ⋅ a 0 2 a −4$

16.

$( xy ) 4 y 3 ⋅ 2 x 5 ( xy ) 4 y 3 ⋅ 2 x 5$

17.

$4 −2 x 3 y −3 2 x 0 4 −2 x 3 y −3 2 x 0$

18.

$( 2 x 2 y ) −2 ( 2 x 2 y ) −2$

19.

$( 16 a 3 b 2 ) ( 4a b −1 ) −2 ( 16 a 3 b 2 ) ( 4a b −1 ) −2$

20.

Write the number in standard notation: $2.1314× 10 −6 2.1314× 10 −6$

21.

Write the number in scientific notation: 16,340,000

## Radicals and Rational Expressions

For the following exercises, find the principal square root.

22.

$121 121$

23.

$196 196$

24.

$361 361$

25.

$75 75$

26.

$162 162$

27.

$32 25 32 25$

28.

$80 81 80 81$

29.

$49 1250 49 1250$

30.

$2 4+ 2 2 4+ 2$

31.

$4 3 +6 3 4 3 +6 3$

32.

$12 5 −13 5 12 5 −13 5$

33.

$−243 5 −243 5$

34.

$250 3 −8 3 250 3 −8 3$

## Polynomials

For the following exercises, perform the given operations and simplify.

35.

$(3 x 3 +2x−1)+(4 x 2 −2x+7) (3 x 3 +2x−1)+(4 x 2 −2x+7)$

36.

$( 2y+1 )−( 2 y 2 −2y−5 ) ( 2y+1 )−( 2 y 2 −2y−5 )$

37.

$(2 x 2 +3x−6)+(3 x 2 −4x+9) (2 x 2 +3x−6)+(3 x 2 −4x+9)$

38.

$( 6 a 2 +3a+10 )−( 6 a 2 −3a+5 ) ( 6 a 2 +3a+10 )−( 6 a 2 −3a+5 )$

39.

$(k+3)(k−6) (k+3)(k−6)$

40.

$(2h+1)(3h−2) (2h+1)(3h−2)$

41.

$( x+1 )( x 2 +1 ) ( x+1 )( x 2 +1 )$

42.

$(m−2)( m 2 +2m−3) (m−2)( m 2 +2m−3)$

43.

$( a+2b )( 3a−b ) ( a+2b )( 3a−b )$

44.

$( x+y )( x−y ) ( x+y )( x−y )$

## Factoring Polynomials

For the following exercises, find the greatest common factor.

45.

$81p+9pq−27 p 2 q 2 81p+9pq−27 p 2 q 2$

46.

$12 x 2 y+4x y 2 −18xy 12 x 2 y+4x y 2 −18xy$

47.

$88 a 3 b+4 a 2 b−144 a 2 88 a 3 b+4 a 2 b−144 a 2$

For the following exercises, factor the polynomial.

48.

$2 x 2 −9x−18 2 x 2 −9x−18$

49.

$8 a 2 +30a−27 8 a 2 +30a−27$

50.

$d 2 −5d−66 d 2 −5d−66$

51.

$x 2 +10x+25 x 2 +10x+25$

52.

$y 2 −6y+9 y 2 −6y+9$

53.

$4 h 2 −12hk+9 k 2 4 h 2 −12hk+9 k 2$

54.

$361 x 2 −121 361 x 2 −121$

55.

$p 3 +216 p 3 +216$

56.

$8 x 3 −125 8 x 3 −125$

57.

$64 q 3 −27 p 3 64 q 3 −27 p 3$

58.

$4x (x−1) − 1 4 +3 (x−1) 3 4 4x (x−1) − 1 4 +3 (x−1) 3 4$

59.

$3p ( p+3 ) 1 3 −8 ( p+3 ) 4 3 3p ( p+3 ) 1 3 −8 ( p+3 ) 4 3$

60.

$4r ( 2r−1 ) − 2 3 −5 ( 2r−1 ) 1 3 4r ( 2r−1 ) − 2 3 −5 ( 2r−1 ) 1 3$

## Rational Expressions

For the following exercises, simplify the expression.

61.

$x 2 −x−12 x 2 −8x+16 x 2 −x−12 x 2 −8x+16$

62.

$4 y 2 −25 4 y 2 −20y+25 4 y 2 −25 4 y 2 −20y+25$

63.

$2 a 2 −a−3 2 a 2 −6a−8 ⋅ 5 a 2 −19a−4 10 a 2 −13a−3 2 a 2 −a−3 2 a 2 −6a−8 ⋅ 5 a 2 −19a−4 10 a 2 −13a−3$

64.

$d−4 d 2 −9 ⋅ d−3 d 2 −16 d−4 d 2 −9 ⋅ d−3 d 2 −16$

65.

$m 2 +5m+6 2 m 2 −5m−3 ÷ 2 m 2 +3m−9 4 m 2 −4m−3 m 2 +5m+6 2 m 2 −5m−3 ÷ 2 m 2 +3m−9 4 m 2 −4m−3$

66.

$4 d 2 −7d−2 6 d 2 −17d+10 ÷ 8 d 2 +6d+1 6 d 2 +7d−10 4 d 2 −7d−2 6 d 2 −17d+10 ÷ 8 d 2 +6d+1 6 d 2 +7d−10$

67.

$10 x + 6 y 10 x + 6 y$

68.

$12 a 2 +2a+1 − 3 a 2 −1 12 a 2 +2a+1 − 3 a 2 −1$

69.

$1 d + 2 c 6c+12d dc 1 d + 2 c 6c+12d dc$

70.

$3 x − 7 y 2 x 3 x − 7 y 2 x$

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
• If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
Access for free at https://openstax.org/books/algebra-and-trigonometry/pages/1-introduction-to-prerequisites
• If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
Access for free at https://openstax.org/books/algebra-and-trigonometry/pages/1-introduction-to-prerequisites
Citation information

© Dec 8, 2021 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.