Una reacción tiene una tendencia natural a producirse y tiene lugar sin el aporte continuo de energía de una fuente externa.
(a) espontáneo; (b) no espontáneo; (c) espontáneo; (d) no espontáneo; (e) espontáneo; (f) espontáneo
Aunque la oxidación de los plásticos es espontánea, el ritmo de oxidación es muy lento. Por lo tanto, los plásticos son cinéticamente estables y no se descomponen de forma apreciable ni siquiera durante periodos de tiempo relativamente largos.
La probabilidad de que todas las partículas estén en un lado es Esta probabilidad es notablemente inferior al resultado de para el sistema de cuatro partículas. La conclusión a la que podemos llegar es que la probabilidad de que todas las partículas permanezcan en una sola parte del sistema disminuirá rápidamente a medida que el número de partículas aumente y, por ejemplo, la probabilidad de que todas las moléculas de gas se reúnan en un solo lado de una habitación a temperatura y presión ambiente es insignificante, dado que el número de moléculas de gas en la habitación es muy grande.
Solo hay un estado inicial. Para el estado final, la energía puede estar contenida en los pares A-C, A-D, B-C o B-D. Por lo tanto, hay cuatro estados finales posibles.
Las masas de estas moléculas sugerirían la tendencia opuesta en sus entropías. La tendencia observada es el resultado de la variación más significativa de la entropía con un estado físico. A temperatura ambiente, el I2 es un sólido, el Br2 es un líquido y Cl2 es un gas.
(a) C3H7OH(l), ya que es una molécula más grande (más compleja y más masiva) y, por lo tanto, se dispone de más microestados que describen sus movimientos a cualquier temperatura. (b) C2H5OH(g), ya que se encuentra en estado gaseoso. (c) 2H(g), ya que la entropía es una propiedad extensiva y, por lo tanto, dos átomos de H (o dos moles de átomos de H) poseen el doble de entropía que un átomo (o un mol de átomos).
(a) Negativo. El sólido relativamente ordenado que precipita disminuye el número de iones móviles en la solución. (b) Negativo. Hay una pérdida neta de tres moles de gas de los reactivos a los productos. (c) Positivo. Hay un aumento neto de siete moles de gas de los reactivos a los productos.
Hay 7,5 moles de gas inicialmente, y 3 + 6 = 9 moles de gas al final. Por lo tanto, es probable que la entropía aumente como resultado de esta reacción, y ΔS es positivo.
(a) 107 J/K; (b) -86,4 J/K; (c) 133,2 J/K; (d) 118,8 J/K; (e) -326,6 J/K; (f) -171,9 J/K; (g) -7,2 J/K
Como ΔSuniv < 0 a cada una de estas temperaturas, la fusión no es espontánea en ninguna de ellas. Los valores dados para la entropía y la entalpía son para el NaCl a 298 K. Se supone que estos no cambian significativamente a las temperaturas más altas utilizadas en el problema.
La reacción no es espontánea a temperatura ambiente.
Por encima de 400 K, ΔG se volverá negativo, y la reacción se volverá espontánea.
(a) 465,1 kJ no espontáneo; (b) -106,86 kJ espontáneo; (c) -291,9 kJ espontáneo; (d) -83,4 kJ espontáneo; (e) -406,7 kJ espontáneo; (f) -154,3 kJ espontáneo
(a) La energía libre estándar de formación es -1124,3 kJ/mol. (b) El cálculo coincide con el valor del Apéndice G porque la energía libre es una función de estado (al igual que la entalpía y la entropía), por lo que su cambio depende solo de los estados inicial y final, no del camino entre ellos.
(a) En condiciones termodinámicas estándar, la evaporación no es espontánea; (b) Kp = 0,031; (c) La evaporación del agua es espontánea; (d) debe ser siempre inferior a Kp o a 0,031 atm. 0,031 atm representa el aire saturado de vapor de agua a 25 °C, o el 100 % de humedad.
(a) No espontáneo como (b) La reacción directa para producir F6P es espontánea en estas condiciones.
ΔG es negativo ya que el proceso es espontáneo. ΔH es positivo ya que al enfriarse la solución, la disolución debe ser endotérmica. ΔS debe ser positivo ya que esto impulsa el proceso, y es lo que se espera para la disolución de cualquier compuesto iónico soluble.
(a) Aumentar desplazará el equilibrio hacia los productos, lo que aumenta el valor de K. Por lo tanto, ΔG° se vuelve más negativo.
(b) El aumento de desplazará el equilibrio hacia los productos, lo que aumenta el valor de K. Por lo tanto, ΔG° se vuelve más negativo.
(c) El aumento de desplazará el equilibrio de los reactivos, lo que disminuye el valor de K. Por lo tanto, ΔG° se vuelve más negativo se vuelve más positivo.