Omitir e ir al contenidoIr a la página de accesibilidadMenú de atajos de teclado
Logo de OpenStax
Química: Comenzando con los átomos 2ed

18.6 Incidencia, preparación y propiedades de los carbonatos

Química: Comenzando con los átomos 2ed18.6 Incidencia, preparación y propiedades de los carbonatos

Índice
  1. Prefacio
  2. 1 Ideas esenciales
    1. Introducción
    2. 1.1 La química en su contexto
    3. 1.2 Fases y clasificación de la materia
    4. 1.3 Propiedades físicas y químicas
    5. 1.4 Mediciones
    6. 1.5 Incertidumbre, exactitud y precisión de las mediciones
    7. 1.6 Tratamiento matemático de los resultados de las mediciones
    8. Términos clave
    9. Ecuaciones clave
    10. Resumen
    11. Ejercicios
  3. 2 Átomos, moléculas e iones
    1. Introducción
    2. 2.1 Las primeras ideas de la teoría atómica
    3. 2.2 Evolución de la teoría atómica
    4. 2.3 Estructura atómica y simbolismo
    5. 2.4 Fórmulas químicas
    6. Términos clave
    7. Ecuaciones clave
    8. Resumen
    9. Ejercicios
  4. 3 Estructura electrónica y propiedades periódicas de los elementos
    1. Introducción
    2. 3.1 Energía electromagnética
    3. 3.2 El modelo de Bohr
    4. 3.3 Desarrollo de la teoría cuántica
    5. 3.4 Estructura electrónica de los átomos (configuraciones de electrones)
    6. 3.5 Variaciones periódicas de las propiedades de los elementos
    7. 3.6 La tabla periódica
    8. 3.7 Compuestos iónicos y moleculares
    9. Términos clave
    10. Ecuaciones clave
    11. Resumen
    12. Ejercicios
  5. 4 Enlace químico y geometría molecular
    1. Introducción
    2. 4.1 Enlace iónico
    3. 4.2 Enlace covalente
    4. 4.3 Nomenclatura química
    5. 4.4 Símbolos y estructuras de Lewis
    6. 4.5 Cargas formales y resonancia
    7. 4.6 Estructura molecular y polaridad
    8. Términos clave
    9. Ecuaciones clave
    10. Resumen
    11. Ejercicios
  6. 5 Teorías avanzadas de enlace
    1. Introducción
    2. 5.1 Teoría de enlace de valencia
    3. 5.2 Orbitales atómicos híbridos
    4. 5.3 Enlaces múltiples
    5. 5.4 Teoría de los orbitales moleculares
    6. Términos clave
    7. Ecuaciones clave
    8. Resumen
    9. Ejercicios
  7. 6 Composición de sustancias y soluciones
    1. Introducción
    2. 6.1 Fórmula de masa
    3. 6.2 Determinación de fórmulas empíricas y moleculares
    4. 6.3 Molaridad
    5. 6.4 Otras unidades para las concentraciones de las soluciones
    6. Términos clave
    7. Ecuaciones clave
    8. Resumen
    9. Ejercicios
  8. 7 Estequiometría de las reacciones químicas
    1. Introducción
    2. 7.1 Escritura y balance de ecuaciones químicas
    3. 7.2 Clasificación de las reacciones químicas
    4. 7.3 Estequiometría de la reacción
    5. 7.4 Rendimiento de la reacción
    6. 7.5 Análisis químico cuantitativo
    7. Términos clave
    8. Ecuaciones clave
    9. Resumen
    10. Ejercicios
  9. 8 Gases
    1. Introducción
    2. 8.1 Presión del gas
    3. 8.2 Relaciones entre presión, volumen, cantidad y temperatura: la ley de los gases ideales
    4. 8.3 Estequiometría de sustancias gaseosas, mezclas y reacciones
    5. 8.4 Efusión y difusión de los gases
    6. 8.5 La teoría cinético-molecular
    7. 8.6 Comportamiento no ideal de los gases
    8. Términos clave
    9. Ecuaciones clave
    10. Resumen
    11. Ejercicios
  10. 9 Termoquímica
    1. Introducción
    2. 9.1 Conceptos básicos de energía
    3. 9.2 Calorimetría
    4. 9.3 Entalpía
    5. 9.4 Fuerza de los enlaces iónicos y covalentes
    6. Términos clave
    7. Ecuaciones clave
    8. Resumen
    9. Ejercicios
  11. 10 Líquidos y sólidos
    1. Introducción
    2. 10.1 Fuerzas intermoleculares
    3. 10.2 Propiedades de los líquidos
    4. 10.3 Transiciones de fase
    5. 10.4 Diagramas de fase
    6. 10.5 El estado sólido de la materia
    7. 10.6 Estructuras de red en los sólidos cristalinos
    8. Términos clave
    9. Ecuaciones clave
    10. Resumen
    11. Ejercicios
  12. 11 Soluciones y coloides
    1. Introducción
    2. 11.1 El proceso de disolución
    3. 11.2 Electrolitos
    4. 11.3 Solubilidad
    5. 11.4 Propiedades coligativas
    6. 11.5 Coloides
    7. Términos clave
    8. Ecuaciones clave
    9. Resumen
    10. Ejercicios
  13. 12 Termodinámica
    1. Introducción
    2. 12.1 Espontaneidad
    3. 12.2 Entropía
    4. 12.3 La segunda y la tercera ley de la termodinámica
    5. 12.4 Energía libre
    6. Términos clave
    7. Ecuaciones clave
    8. Resumen
    9. Ejercicios
  14. 13 Conceptos fundamentales del equilibrio
    1. Introducción
    2. 13.1 Equilibrio químico
    3. 13.2 Constantes de equilibrio
    4. 13.3 Equilibrios cambiantes: el principio de Le Châtelier
    5. 13.4 Cálculos de equilibrio
    6. Términos clave
    7. Ecuaciones clave
    8. Resumen
    9. Ejercicios
  15. 14 Equilibrios ácido-base
    1. Introducción
    2. 14.1 Ácidos y Bases de Brønsted-Lowry
    3. 14.2 pH y pOH
    4. 14.3 Fuerza relativa de los ácidos y las bases
    5. 14.4 Hidrólisis de sales
    6. 14.5 Ácidos polipróticos
    7. 14.6 Tampones
    8. 14.7 Titulaciones ácido-base
    9. Términos clave
    10. Ecuaciones clave
    11. Resumen
    12. Ejercicios
  16. 15 Equilibrios de otras clases de reacción
    1. Introducción
    2. 15.1 Precipitación y disolución
    3. 15.2 Ácidos y Bases de Lewis
    4. 15.3 Equilibrios acoplados
    5. Términos clave
    6. Ecuaciones clave
    7. Resumen
    8. Ejercicios
  17. 16 Electroquímica
    1. Introducción
    2. 16.1 Repaso de química redox
    3. 16.2 Celdas galvánicas
    4. 16.3 Potenciales del electrodo y de la celda
    5. 16.4 Potencial, energía libre y equilibrio
    6. 16.5 Baterías y pilas de combustible
    7. 16.6 Corrosión
    8. 16.7 Electrólisis
    9. Términos clave
    10. Ecuaciones clave
    11. Resumen
    12. Ejercicios
  18. 17 Cinética
    1. Introducción
    2. 17.1 Tasas de reacciones químicas
    3. 17.2 Factores que afectan las tasas de reacción
    4. 17.3 Leyes de velocidad
    5. 17.4 Leyes de tasas integradas
    6. 17.5 Teoría de colisiones
    7. 17.6 Mecanismos de reacción
    8. 17.7 Catálisis
    9. Términos clave
    10. Ecuaciones clave
    11. Resumen
    12. Ejercicios
  19. 18 Metales representativos, metaloides y no metales
    1. Introducción
    2. 18.1 Periodicidad
    3. 18.2 Incidencia y preparación de los metales representativos
    4. 18.3 Estructura y propiedades generales de los metaloides
    5. 18.4 Estructura y propiedades generales de los no metales
    6. 18.5 Incidencia, preparación y compuestos de hidrógeno
    7. 18.6 Incidencia, preparación y propiedades de los carbonatos
    8. 18.7 Incidencia, preparación y propiedades del nitrógeno
    9. 18.8 Incidencia, preparación y propiedades del fósforo
    10. 18.9 Incidencia, preparación y compuestos del oxígeno
    11. 18.10 Incidencia, preparación y propiedades del azufre
    12. 18.11 Incidencia, preparación y propiedades de los halógenos
    13. 18.12 Incidencia, preparación y propiedades de los gases nobles
    14. Términos clave
    15. Resumen
    16. Ejercicios
  20. 19 Metales de transición y química de coordinación
    1. Introducción
    2. 19.1 Incidencia, preparación y propiedades de los metales de transición y sus compuestos
    3. 19.2 Química de coordinación de los metales de transición
    4. 19.3 Propiedades espectroscópicas y magnéticas de los compuestos de coordinación
    5. Términos clave
    6. Resumen
    7. Ejercicios
  21. 20 Química nuclear
    1. Introducción
    2. 20.1 Estructura y estabilidad nuclear
    3. 20.2 Ecuaciones nucleares
    4. 20.3 Decaimiento radiactivo
    5. 20.4 Transmutación y energía nuclear
    6. 20.5 Usos de los radioisótopos
    7. 20.6 Efectos biológicos de la radiación
    8. Términos clave
    9. Ecuaciones clave
    10. Resumen
    11. Ejercicios
  22. 21 Química orgánica
    1. Introducción
    2. 21.1 Hidrocarburos
    3. 21.2 Alcoholes y éteres
    4. 21.3 Aldehídos, cetonas, ácidos carboxílicos y ésteres
    5. 21.4 Aminas y amidas
    6. Términos clave
    7. Resumen
    8. Ejercicios
  23. A La tabla periódica
  24. B Matemáticas esenciales
  25. C Unidades y factores de conversión
  26. D Constantes físicas fundamentales
  27. E Propiedades del agua
  28. F Composición de los ácidos y las bases comerciales
  29. G Propiedades termodinámicas estándar de determinadas sustancias
  30. H Constantes de ionización de los ácidos débiles
  31. I Constantes de ionización de las bases débiles
  32. J Productos de solubilidad
  33. K Constantes de formación de iones complejos
  34. L Potenciales de electrodos estándar (media celda)
  35. M Semivida de varios isótopos radiactivos
  36. Clave de respuestas
    1. Capítulo 1
    2. Capítulo 2
    3. Capítulo 3
    4. Capítulo 4
    5. Capítulo 5
    6. Capítulo 6
    7. Capítulo 7
    8. Capítulo 8
    9. Capítulo 9
    10. Capítulo 10
    11. Capítulo 11
    12. Capítulo 12
    13. Capítulo 13
    14. Capítulo 14
    15. Capítulo 15
    16. Capítulo 16
    17. Capítulo 17
    18. Capítulo 18
    19. Capítulo 19
    20. Capítulo 20
    21. Capítulo 21
  37. Índice

Objetivos de aprendizaje

Al final de esta sección, podrá:

  • Describir la preparación, propiedades y usos de algunos carbonatos metálicos representativos

La química del carbono es extensa; sin embargo, la mayor parte de esta química no es relevante para este capítulo. Los demás aspectos de la química del carbono aparecerán en el capítulo dedicado a la química orgánica. En este capítulo, nos centraremos en el ion de carbonato y las sustancias relacionadas. Los metales de los grupos 1 y 2, así como el zinc, el cadmio, el mercurio y el plomo(II), forman carbonatos iónicos, es decir, compuestos que contienen aniones de carbonato, CO32−.CO32−. Los metales del grupo 1, el magnesio, el calcio, el estroncio y el bario también forman carbonatos de hidrógeno, compuestos que contienen el anión carbonato de hidrógeno, HCO3,HCO3, también conocido como el anión bicarbonato.

A excepción del carbonato de magnesio, es posible preparar carbonatos de los metales de los grupos 1 y 2 mediante la reacción del dióxido de carbono con el óxido o hidróxido respectivo. Ejemplos de estas reacciones son:

Na2O(s)+CO2(g)Na2CO3(s).Na2O(s)+CO2(g)Na2CO3(s).
Ca(OH)2 (s)+CO2(g)CaCO3(s)+H2O(l)Ca(OH)2 (s)+CO2(g)CaCO3(s)+H2O(l)

Los carbonatos de los metales alcalinotérreos del grupo 12 y del plomo(II) no son solubles. Estos carbonatos se precipitan al mezclar una solución de carbonato de metal alcalino soluble con una solución de sales solubles de estos metales. Ejemplos de ecuaciones iónicas netas para las reacciones son:

Ca2+(aq)+CO32−(aq)CaCO3(s).Ca2+(aq)+CO32−(aq)CaCO3(s).
Pb2+(aq)+CO32−(aq)PbCO3(s).Pb2+(aq)+CO32−(aq)PbCO3(s).

Las perlas y las conchas de la mayoría de los moluscos son de carbonato de calcio. El estaño(II) o uno de los iones trivalentes o tetravalentes como el Al3+ o el Sn4+ se comportan de forma diferente en esta reacción, ya que se forma dióxido de carbono y el óxido correspondiente en lugar del carbonato.

Los carbonatos de hidrógeno de metales alcalinos, como el NaHCO3 y el CsHCO3, se forman al saturar una solución de los hidróxidos con dióxido de carbono. La reacción iónica neta implica al ion de hidróxido y al dióxido de carbono:

OH(aq)+CO2(aq)HCO3(aq)OH(aq)+CO2(aq)HCO3(aq)

Es posible aislar los sólidos por evaporación del agua de la solución.

Aunque son insolubles en agua pura, los carbonatos alcalinotérreos se disuelven fácilmente en agua que contiene dióxido de carbono porque se forman sales de carbonato de hidrógeno. Por ejemplo, las cuevas y los sumideros se forman en la piedra caliza cuando el CaCO3 se disuelve en agua que contiene dióxido de carbono disuelto:

CaCO3(s)+CO2(aq)+H2O(l)Ca2+(aq)+2HCO3(aq)CaCO3(s)+CO2(aq)+H2O(l)Ca2+(aq)+2HCO3(aq)

Los carbonatos de hidrógeno de los metales alcalinotérreos solo son estables en solución; la evaporación de la solución produce el carbonato. Las estalactitas y estalagmitas, como las que se muestran en la Figura 18.30, se forman en las cuevas cuando las gotas de agua que contienen hidrogenocarbonato de calcio disuelto se evaporan y dejan un depósito de carbonato de calcio.

Se muestran dos fotografías marcadas como "a" y "b". La foto a muestra estalactitas que se aferran al techo de una cueva, mientras que la foto b muestra una estalagmita que crece desde el suelo de una cueva.
Figura 18.30 (a) Las estalactitas y (b) las estalagmitas son formaciones de las cuevas de carbonato cálcico (créditos: a: modificación del trabajo de Arvind Govindaraj; b: modificación del trabajo del Servicio de Parques Nacionales).

Los dos carbonatos más utilizados comercialmente son el carbonato de sodio y el carbonato de calcio. En los Estados Unidos, el carbonato de sodio se extrae del mineral trona, Na3(CO3)(HCO3)(H2O)2. Tras la recristalización para eliminar la arcilla y otras impurezas, el calentamiento de la trona recristalizada produce Na2CO3:

2Na3(CO3)(HCO3)(H2O)2 (s)3Na2CO3(s)+5H2O(l)+CO2(g)2Na3(CO3)(HCO3)(H2O)2 (s)3Na2CO3(s)+5H2O(l)+CO2(g)

Los carbonatos son bases moderadamente fuertes. Las soluciones acuosas son básicas porque el ion de carbonato acepta el ion de hidrógeno del agua en esta reacción reversible:

CO32−(aq)+H2O(l)HCO3(aq)+OH(aq)CO32−(aq)+H2O(l)HCO3(aq)+OH(aq)

Los carbonatos reaccionan con los ácidos para formar sales del metal, dióxido de carbono gaseoso y agua. La reacción del carbonato de calcio, el ingrediente activo del antiácido Tums, con el ácido clorhídrico (ácido del estómago), como se muestra en la Figura 18.31, ilustra la reacción:

CaCO3(s)+2HCl(aq)CaCl2(aq)+CO2(g)+H2O(l)CaCO3(s)+2HCl(aq)CaCl2(aq)+CO2(g)+H2O(l)
Se muestra una fotografía de un vaso de reloj lleno de un sólido blanco. Una pipeta de plástico gotea un líquido incoloro en el sólido, provocando burbujas.
Figura 18.31 Se muestra la reacción del carbonato de calcio con el ácido clorhídrico (créditos: Mark Ott).

Otras aplicaciones de los carbonatos son la fabricación de vidrio (donde los iones de carbonato sirven como fuente de iones de óxido) y la síntesis de óxidos.

Los carbonatos de hidrógeno son anfóteros porque actúan como ácidos débiles y como bases débiles. Los iones de carbonato de hidrógeno actúan como ácidos y reaccionan con soluciones de hidróxidos solubles para formar un carbonato y agua:

KHCO3(aq)+KOH(aq)K2CO3(aq)+H2O(l)KHCO3(aq)+KOH(aq)K2CO3(aq)+H2O(l)

Con los ácidos, los carbonatos de hidrógeno forman una sal, dióxido de carbono y agua. El polvo para hornear (bicarbonato sódico o bicarbonato de sodio) es el carbonato de hidrógeno de sodio. La levadura en polvo contiene bicarbonato sódico y un ácido sólido como el tartrato de hidrógeno de potasio (cremor tártaro), KHC4H4O6. Mientras el polvo esté seco, no se produce ninguna reacción; inmediatamente después de la adición de agua, el ácido reacciona con los iones de carbonato de hidrógeno para formar dióxido de carbono:

HC4H4O6(aq)+HCO3(aq)C4H4O62−(aq)+CO2(g)+H2O(l)HC4H4O6(aq)+HCO3(aq)C4H4O62−(aq)+CO2(g)+H2O(l)

La masa atrapará el dióxido de carbono, haciendo que se expanda durante la cocción, produciendo la textura característica de los productos horneados.

Solicitar una copia impresa

As an Amazon Associate we earn from qualifying purchases.

Cita/Atribución

¿Desea citar, compartir o modificar este libro? Este libro utiliza la Creative Commons Attribution License y debe atribuir a OpenStax.

Información de atribución
  • Si redistribuye todo o parte de este libro en formato impreso, debe incluir en cada página física la siguiente atribución:
    Acceso gratis en https://openstax.org/books/qu%C3%ADmica-comenzando-%C3%A1tomos-2ed/pages/1-introduccion
  • Si redistribuye todo o parte de este libro en formato digital, debe incluir en cada vista de la página digital la siguiente atribución:
    Acceso gratuito en https://openstax.org/books/qu%C3%ADmica-comenzando-%C3%A1tomos-2ed/pages/1-introduccion
Información sobre citas

© 19 may. 2022 OpenStax. El contenido de los libros de texto que produce OpenStax tiene una licencia de Creative Commons Attribution License . El nombre de OpenStax, el logotipo de OpenStax, las portadas de libros de OpenStax, el nombre de OpenStax CNX y el logotipo de OpenStax CNX no están sujetos a la licencia de Creative Commons y no se pueden reproducir sin el previo y expreso consentimiento por escrito de Rice University.