AI Fairness 360
7.5 Natural Language Processing
apply.map
10.2 Validating Your Model
binom()
function
3.5 Discrete and Continuous Probability Distributions
cusum()
9.1 Encoding Univariate Data
DataFrame.describe()
3.2 Measures of Variation
df.info()
10.2 Validating Your Model
f_oneway()
4.4 Analysis of Variance (ANOVA)
Fairlearn
7.5 Natural Language Processing
fig.add.subplot()
9.5 Multivariate and Network Data Visualization Using Python
hist()
9.1 Encoding Univariate Data
HolisticAI
7.5 Natural Language Processing
linregress()
4.3 Correlation and Linear Regression Analysis,
4.3 Correlation and Linear Regression Analysis
LogisticRegression
6.2 Classification Using Machine Learning
mpl_toolkits.mplot3d()
9.5 Multivariate and Network Data Visualization Using Python
mpl.toolkits.mplot3d
9.5 Multivariate and Network Data Visualization Using Python
np.array()
function
4.3 Correlation and Linear Regression Analysis
Pearsonr()
4.3 Correlation and Linear Regression Analysis,
4.3 Correlation and Linear Regression Analysis
plot.hist()
9.1 Encoding Univariate Data
plt.scatter()
4.3 Correlation and Linear Regression Analysis
replace
10.2 Validating Your Model
round()
function
3.5 Discrete and Continuous Probability Distributions
scatter
9.1 Encoding Univariate Data
Scikit-Learn
7.5 Natural Language Processing
scipy
library
4.4 Analysis of Variance (ANOVA)
SciPy library
4.1 Statistical Inference and Confidence Intervals
sklearn.ensemble
6.5 Other Machine Learning Techniques
test_size=0.25
7.1 Introduction to Neural Networks
to_datatime()
5.1 Introduction to Time Series Analysis
to_numeric()
2.3 Web Scraping and Social Media Data Collection
ttest_1samp()
4.2 Hypothesis Testing
What-If Tool
7.5 Natural Language Processing