Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Physics

Performance Task

PhysicsPerformance Task

Performance Task

23.3 The Unification of Forces

Teacher Support

Teacher Support

This performance task meets the following standard:

NGSS—HS-PS2-6. Communicate scientific and technical information about why the molecular-level structure is important in the functioning of designed materials.

32.

Communication is an often overlooked and useful skill for a scientist, especially in a competitive field where financial resources are limited. Scientists are often required to explain their findings or the relevance of their work to agencies within the government in order to maintain funding to continue their research. Let’s say you are an ambitious young particle physicist, heading an expensive project, and you need to justify its existence to the appropriate funding agency. Write a brief paper (about one page) explaining why molecular-level structure is important in the functioning of designed materials in a specific industry.

  • First, think of an industry where molecular-level structure is important.
  • Research what materials are used in that industry as well as what are the desired properties of the materials.
  • What molecular-level characteristics lead to what properties?

One example would be explaining how flexible but durable materials are made up of long-chained molecules and how this is useful for finding more environmentally friendly alternatives to plastics. Another example is explaining why electrically conductive materials are often made of metal and how this is useful for developing better batteries.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute Texas Education Agency (TEA). The original material is available at: https://www.texasgateway.org/book/tea-physics . Changes were made to the original material, including updates to art, structure, and other content updates.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/physics/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/physics/pages/1-introduction
Citation information

© Jun 7, 2024 Texas Education Agency (TEA). The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.