Skip to Content
OpenStax Logo
Physics

Short Answer

PhysicsShort Answer
  1. Preface
  2. 1 What is Physics?
    1. Introduction
    2. 1.1 Physics: Definitions and Applications
    3. 1.2 The Scientific Methods
    4. 1.3 The Language of Physics: Physical Quantities and Units
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  3. 2 Motion in One Dimension
    1. Introduction
    2. 2.1 Relative Motion, Distance, and Displacement
    3. 2.2 Speed and Velocity
    4. 2.3 Position vs. Time Graphs
    5. 2.4 Velocity vs. Time Graphs
    6. Key Terms
    7. Section Summary
    8. Key Equations
    9. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    10. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  4. 3 Acceleration
    1. Introduction
    2. 3.1 Acceleration
    3. 3.2 Representing Acceleration with Equations and Graphs
    4. Key Terms
    5. Section Summary
    6. Key Equations
    7. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    8. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  5. 4 Forces and Newton’s Laws of Motion
    1. Introduction
    2. 4.1 Force
    3. 4.2 Newton's First Law of Motion: Inertia
    4. 4.3 Newton's Second Law of Motion
    5. 4.4 Newton's Third Law of Motion
    6. Key Terms
    7. Section Summary
    8. Key Equations
    9. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    10. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  6. 5 Motion in Two Dimensions
    1. Introduction
    2. 5.1 Vector Addition and Subtraction: Graphical Methods
    3. 5.2 Vector Addition and Subtraction: Analytical Methods
    4. 5.3 Projectile Motion
    5. 5.4 Inclined Planes
    6. 5.5 Simple Harmonic Motion
    7. Key Terms
    8. Section Summary
    9. Key Equations
    10. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    11. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  7. 6 Circular and Rotational Motion
    1. Introduction
    2. 6.1 Angle of Rotation and Angular Velocity
    3. 6.2 Uniform Circular Motion
    4. 6.3 Rotational Motion
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  8. 7 Newton's Law of Gravitation
    1. Introduction
    2. 7.1 Kepler's Laws of Planetary Motion
    3. 7.2 Newton's Law of Universal Gravitation and Einstein's Theory of General Relativity
    4. Key Terms
    5. Section Summary
    6. Key Equations
    7. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    8. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  9. 8 Momentum
    1. Introduction
    2. 8.1 Linear Momentum, Force, and Impulse
    3. 8.2 Conservation of Momentum
    4. 8.3 Elastic and Inelastic Collisions
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  10. 9 Work, Energy, and Simple Machines
    1. Introduction
    2. 9.1 Work, Power, and the Work–Energy Theorem
    3. 9.2 Mechanical Energy and Conservation of Energy
    4. 9.3 Simple Machines
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  11. 10 Special Relativity
    1. Introduction
    2. 10.1 Postulates of Special Relativity
    3. 10.2 Consequences of Special Relativity
    4. Key Terms
    5. Section Summary
    6. Key Equations
    7. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    8. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  12. 11 Thermal Energy, Heat, and Work
    1. Introduction
    2. 11.1 Temperature and Thermal Energy
    3. 11.2 Heat, Specific Heat, and Heat Transfer
    4. 11.3 Phase Change and Latent Heat
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  13. 12 Thermodynamics
    1. Introduction
    2. 12.1 Zeroth Law of Thermodynamics: Thermal Equilibrium
    3. 12.2 First law of Thermodynamics: Thermal Energy and Work
    4. 12.3 Second Law of Thermodynamics: Entropy
    5. 12.4 Applications of Thermodynamics: Heat Engines, Heat Pumps, and Refrigerators
    6. Key Terms
    7. Section Summary
    8. Key Equations
    9. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    10. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  14. 13 Waves and Their Properties
    1. Introduction
    2. 13.1 Types of Waves
    3. 13.2 Wave Properties: Speed, Amplitude, Frequency, and Period
    4. 13.3 Wave Interaction: Superposition and Interference
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  15. 14 Sound
    1. Introduction
    2. 14.1 Speed of Sound, Frequency, and Wavelength
    3. 14.2 Sound Intensity and Sound Level
    4. 14.3 Doppler Effect and Sonic Booms
    5. 14.4 Sound Interference and Resonance
    6. Key Terms
    7. Section Summary
    8. Key Equations
    9. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    10. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  16. 15 Light
    1. Introduction
    2. 15.1 The Electromagnetic Spectrum
    3. 15.2 The Behavior of Electromagnetic Radiation
    4. Key Terms
    5. Section Summary
    6. Key Equations
    7. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    8. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  17. 16 Mirrors and Lenses
    1. Introduction
    2. 16.1 Reflection
    3. 16.2 Refraction
    4. 16.3 Lenses
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  18. 17 Diffraction and Interference
    1. Introduction
    2. 17.1 Understanding Diffraction and Interference
    3. 17.2 Applications of Diffraction, Interference, and Coherence
    4. Key Terms
    5. Section Summary
    6. Key Equations
    7. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    8. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  19. 18 Static Electricity
    1. Introduction
    2. 18.1 Electrical Charges, Conservation of Charge, and Transfer of Charge
    3. 18.2 Coulomb's law
    4. 18.3 Electric Field
    5. 18.4 Electric Potential
    6. 18.5 Capacitors and Dielectrics
    7. Key Terms
    8. Section Summary
    9. Key Equations
    10. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    11. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  20. 19 Electrical Circuits
    1. Introduction
    2. 19.1 Ohm's law
    3. 19.2 Series Circuits
    4. 19.3 Parallel Circuits
    5. 19.4 Electric Power
    6. Key Terms
    7. Section Summary
    8. Key Equations
    9. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    10. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  21. 20 Magnetism
    1. Introduction
    2. 20.1 Magnetic Fields, Field Lines, and Force
    3. 20.2 Motors, Generators, and Transformers
    4. 20.3 Electromagnetic Induction
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  22. 21 The Quantum Nature of Light
    1. Introduction
    2. 21.1 Planck and Quantum Nature of Light
    3. 21.2 Einstein and the Photoelectric Effect
    4. 21.3 The Dual Nature of Light
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  23. 22 The Atom
    1. Introduction
    2. 22.1 The Structure of the Atom
    3. 22.2 Nuclear Forces and Radioactivity
    4. 22.3 Half Life and Radiometric Dating
    5. 22.4 Nuclear Fission and Fusion
    6. 22.5 Medical Applications of Radioactivity: Diagnostic Imaging and Radiation
    7. Key Terms
    8. Section Summary
    9. Key Equations
    10. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Performance Task
    11. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  24. 23 Particle Physics
    1. Introduction
    2. 23.1 The Four Fundamental Forces
    3. 23.2 Quarks
    4. 23.3 The Unification of Forces
    5. Key Terms
    6. Section Summary
    7. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Performance Task
    8. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  25. A | Reference Tables
  26. Index

Short Answer

20.1 Magnetic Fields, Field Lines, and Force

35.
Given a bar magnet, a needle, a cork, and a bowl full of water, describe how to make a compass.
  1. Magnetize the needle by holding it perpendicular to a bar magnet’s north pole and pierce the cork along its longitudinal axis by the needle and place the needle-cork combination in the water. The needle now orients itself along the magnetic field lines of Earth.
  2. Magnetize the needle by holding it perpendicular to a bar magnet’s north pole and pierce the cork along its longitudinal axis by the needle and place the needle-cork combination in the water. The needle now orients itself perpendicular to the magnetic field lines of Earth.
  3. Magnetize the needle by holding its axis parallel to the axis of a bar magnet and pierce the cork along its longitudinal axis by the needle and place the needle-cork combination in the water. The needle now orients itself along the magnetic field lines of Earth.
  4. Magnetize the needle by holding its axis parallel to the axis of a bar magnet and pierce the cork along its longitudinal axis by the needle and place the needle-cork combination in the water. The needle now orients itself perpendicular to the magnetic field lines of Earth.
36.
Give two differences between electric field lines and magnetic field lines.
  1. Electric field lines begin and end on opposite charges and the electric force on a charge is in the direction of field, while magnetic fields form a loop and the magnetic force on a charge is perpendicular to the field.
  2. Electric field lines form a loop and the electric force on a charge is in the direction of field, while magnetic fields begin and end on opposite charge and the magnetic force on a charge is perpendicular to the field.
  3. Electric field lines begin and end on opposite charges and the electric force on a charge is in the perpendicular direction of field, while magnetic fields form a loop and the magnetic force on a charge is in the direction of the field.
  4. Electric field lines form a loop and the electric force on a charge is in the perpendicular direction of field, while magnetic fields begin and end on opposite charge and the magnetic force on a charge is in the direction of the field.
37.

To produce a magnetic field of 0.0020 T, what current is required in a 500-turn solenoid that is 25 cm long?

  1. 0.80 A
  2. 1.60 A
  3. 80 A
  4. 160 A
38.
You magnetize a needle by aligning it along the axis of a bar magnet and just outside the north pole of the magnet. Will the point of the needle that was closest to the bar magnet then be attracted to or repelled from the south pole of another magnet?
  1. The needle will magnetize and the point of needle kept closer to the north pole will act as a south pole. Hence, it will repel the south pole of other magnet.
  2. The needle will magnetize and the point of needle kept closer to the north pole will act as a south pole. Hence, it will attract the south pole of other magnet.
  3. The needle will magnetize and the point of a needle kept closer to the north pole will act as a north pole. Hence, it will repel the south pole of the other magnet.
  4. The needle will magnetize and the point of needle kept closer to the north pole will act as a north pole. Hence, it will attract the south pole of other magnet.
39.

Using four solenoids of the same size, describe how to orient them and in which direction the current should flow to make a magnet with two opposite-facing north poles and two opposite-facing south poles.

An image of four wire coils with a current flowing through each, creating a magnet in each case. Top coil is labeled N with arrow labeled I pointing toward end of coil. Right coil is labeled S with arrow labeled I pointing away from end of coil. Bottom coil is labeled N with arrow labeled I pointing away from end of coil. Left coil is labeled S with arrow labeled I pointing toward end of coil.


An image of four wire coils with a current flowing through each, creating a magnet in each case. Top coil is labeled S with arrow labeled I pointing away from end of coil. Right coil is labeled N with arrow labeled I pointing away from end of coil. Bottom coil is labeled S with arrow labeled I pointing away from end of coil. Left coil is labeled N with arrow labeled I pointing toward end of coil.


An image of four wire coils with a current flowing through each, creating a magnet in each case. Top coil is labeled N with arrow labeled I pointing toward end of coil. Right coil is labeled S with arrow labeled I pointing toward end of coil. Bottom coil is labeled N with arrow labeled I pointing away from end of coil. Left coil is labeled S with arrow labeled I pointing toward end of coil.


An image of four wire coils with a current flowing through each, creating a magnet in each case. Top coil is labeled S with arrow labeled I pointing toward end of coil. Right coil is labeled N with arrow labeled I pointing away from end of coil. Bottom coil is labeled S with arrow labeled I pointing toward end of coil. Left coil is labeled N with arrow labeled I pointing toward end of coil.
40.

How far from a straight wire carrying 0.45 A is the magnetic field strength 0.040 T?

  1. 0.23 µm
  2. 0.72 µm
  3. 2.3 µm
  4. 7.2 µm

20.2 Motors, Generators, and Transformers

41.

A laminated-coil transformer has a wire coiled 12 times around one of its sides. How many coils should you wrap around the opposite side to get a voltage output that is one half of the input voltage? Explain.

  1. six output coils because the ratio of output to input voltage is the same as the ratio of number of output coils to input coils
  2. 12 output coils because the ratio of output to input voltage is the same as the ratio of number of output coils to input coils
  3. 24 output coils because the ratio of output to input voltage is half the ratio of the number of output coils to input coils
  4. 36 output coils because the ratio of output to input voltage is three times the ratio of the number of output coils to input coils
42.

Explain why long-distance electrical power lines are designed to carry very high voltages.

  1. Ptransmitted = Itransmitted>2 Rwire and Plost = Itransmitted Vtransmitted, so V must be low to make the current transmitted as high as possible.
  2. Ptransmitted = Itransmitted>2 Rwire and Plost = Ilost Vlost, so V must be low to make the current transmitted as high as possible.
  3. Ptransmitted = Itransmitted>2 Rwire and Plost = Itransmitted Vtransmitted, so V must be high to make the current transmitted as low as possible
  4. Plost = Itransmitted2 Rwire and Ptransmitted = Itransmitted Vtransmitted, so V must be high to make the current transmitted as low as possible.
43.
How is the output emf of a generator affected if you double the frequency of rotation of its coil?
  1. The output emf will be doubled.
  2. The output emf will be halved.
  3. The output emf will be quadrupled.
  4. The output emf will be tripled.
44.
In a hydroelectric dam, what is used to power the electrical generators that provide electric power? Explain.
  1. The electric potential energy of stored water is used to produce emf with the help of a turbine.
  2. The electric potential energy of stored water is used to produce resistance with the help of a turbine.
  3. Gravitational potential energy of stored water is used to produce resistance with the help of a turbine.
  4. Gravitational potential energy of stored water is used to produce emf with the help of a turbine.

20.3 Electromagnetic Induction

45.
A uniform magnetic field is perpendicular to the plane of a wire loop. If the loop accelerates in the direction of the field, will a current be induced in the loop? Explain why or why not.
  1. No, because magnetic flux through the loop remains constant.
  2. No, because magnetic flux through the loop changes continuously.
  3. Yes, because magnetic flux through the loop remains constant.
  4. Yes, because magnetic flux through the loop changes continuously.
46.

The plane of a square wire circuit with side 4.0 cm long is at an angle of 45° with respect to a uniform magnetic field of 0.25 T. The wires have a resistance per unit length of 0.2. If the field drops to zero in 2.5 s, what magnitude current is induced in the square circuit?

  1. 35 µA
  2. 87.5 µA
  3. 3.5 mA
  4. 35 A
47.

Yes or no—If a bar magnet moves through a wire loop as shown in the figure, is a current induced in the loop? Explain why or why not.

This figure shows a round circle representing a wire loop and a bar magnet with an arrow pointing upward as it moves through the wire loop. The south and north poles run parallel with the surface area enclosed by the loop.
  1. No, because the net magnetic field passing through the loop is zero.
  2. No, because the net magnetic field passing through the loop is nonzero.
  3. Yes, because the net magnetic field passing through the loop is zero.
  4. Yes, because the net magnetic field line passing through the loop is nonzero.
48.

What is the magnetic flux through an equilateral triangle with side 60 cm long and whose plane makes a 60° angle with a uniform magnetic field of 0.33 T?

  1. 0.045 Wb
  2. 0.09 Wb
  3. 0.405 Wb
  4. 4.5 Wb
Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/physics/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/physics/pages/1-introduction
Citation information

© Jun 17, 2020 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.