Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Physics

Concept Items

PhysicsConcept Items

Menu
Table of contents
  1. Preface
  2. 1 What is Physics?
    1. Introduction
    2. 1.1 Physics: Definitions and Applications
    3. 1.2 The Scientific Methods
    4. 1.3 The Language of Physics: Physical Quantities and Units
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  3. 2 Motion in One Dimension
    1. Introduction
    2. 2.1 Relative Motion, Distance, and Displacement
    3. 2.2 Speed and Velocity
    4. 2.3 Position vs. Time Graphs
    5. 2.4 Velocity vs. Time Graphs
    6. Key Terms
    7. Section Summary
    8. Key Equations
    9. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    10. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  4. 3 Acceleration
    1. Introduction
    2. 3.1 Acceleration
    3. 3.2 Representing Acceleration with Equations and Graphs
    4. Key Terms
    5. Section Summary
    6. Key Equations
    7. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    8. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  5. 4 Forces and Newton’s Laws of Motion
    1. Introduction
    2. 4.1 Force
    3. 4.2 Newton's First Law of Motion: Inertia
    4. 4.3 Newton's Second Law of Motion
    5. 4.4 Newton's Third Law of Motion
    6. Key Terms
    7. Section Summary
    8. Key Equations
    9. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    10. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  6. 5 Motion in Two Dimensions
    1. Introduction
    2. 5.1 Vector Addition and Subtraction: Graphical Methods
    3. 5.2 Vector Addition and Subtraction: Analytical Methods
    4. 5.3 Projectile Motion
    5. 5.4 Inclined Planes
    6. 5.5 Simple Harmonic Motion
    7. Key Terms
    8. Section Summary
    9. Key Equations
    10. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    11. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  7. 6 Circular and Rotational Motion
    1. Introduction
    2. 6.1 Angle of Rotation and Angular Velocity
    3. 6.2 Uniform Circular Motion
    4. 6.3 Rotational Motion
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  8. 7 Newton's Law of Gravitation
    1. Introduction
    2. 7.1 Kepler's Laws of Planetary Motion
    3. 7.2 Newton's Law of Universal Gravitation and Einstein's Theory of General Relativity
    4. Key Terms
    5. Section Summary
    6. Key Equations
    7. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    8. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  9. 8 Momentum
    1. Introduction
    2. 8.1 Linear Momentum, Force, and Impulse
    3. 8.2 Conservation of Momentum
    4. 8.3 Elastic and Inelastic Collisions
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  10. 9 Work, Energy, and Simple Machines
    1. Introduction
    2. 9.1 Work, Power, and the Work–Energy Theorem
    3. 9.2 Mechanical Energy and Conservation of Energy
    4. 9.3 Simple Machines
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  11. 10 Special Relativity
    1. Introduction
    2. 10.1 Postulates of Special Relativity
    3. 10.2 Consequences of Special Relativity
    4. Key Terms
    5. Section Summary
    6. Key Equations
    7. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    8. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  12. 11 Thermal Energy, Heat, and Work
    1. Introduction
    2. 11.1 Temperature and Thermal Energy
    3. 11.2 Heat, Specific Heat, and Heat Transfer
    4. 11.3 Phase Change and Latent Heat
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  13. 12 Thermodynamics
    1. Introduction
    2. 12.1 Zeroth Law of Thermodynamics: Thermal Equilibrium
    3. 12.2 First law of Thermodynamics: Thermal Energy and Work
    4. 12.3 Second Law of Thermodynamics: Entropy
    5. 12.4 Applications of Thermodynamics: Heat Engines, Heat Pumps, and Refrigerators
    6. Key Terms
    7. Section Summary
    8. Key Equations
    9. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    10. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  14. 13 Waves and Their Properties
    1. Introduction
    2. 13.1 Types of Waves
    3. 13.2 Wave Properties: Speed, Amplitude, Frequency, and Period
    4. 13.3 Wave Interaction: Superposition and Interference
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  15. 14 Sound
    1. Introduction
    2. 14.1 Speed of Sound, Frequency, and Wavelength
    3. 14.2 Sound Intensity and Sound Level
    4. 14.3 Doppler Effect and Sonic Booms
    5. 14.4 Sound Interference and Resonance
    6. Key Terms
    7. Section Summary
    8. Key Equations
    9. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    10. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  16. 15 Light
    1. Introduction
    2. 15.1 The Electromagnetic Spectrum
    3. 15.2 The Behavior of Electromagnetic Radiation
    4. Key Terms
    5. Section Summary
    6. Key Equations
    7. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    8. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  17. 16 Mirrors and Lenses
    1. Introduction
    2. 16.1 Reflection
    3. 16.2 Refraction
    4. 16.3 Lenses
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  18. 17 Diffraction and Interference
    1. Introduction
    2. 17.1 Understanding Diffraction and Interference
    3. 17.2 Applications of Diffraction, Interference, and Coherence
    4. Key Terms
    5. Section Summary
    6. Key Equations
    7. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    8. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  19. 18 Static Electricity
    1. Introduction
    2. 18.1 Electrical Charges, Conservation of Charge, and Transfer of Charge
    3. 18.2 Coulomb's law
    4. 18.3 Electric Field
    5. 18.4 Electric Potential
    6. 18.5 Capacitors and Dielectrics
    7. Key Terms
    8. Section Summary
    9. Key Equations
    10. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    11. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  20. 19 Electrical Circuits
    1. Introduction
    2. 19.1 Ohm's law
    3. 19.2 Series Circuits
    4. 19.3 Parallel Circuits
    5. 19.4 Electric Power
    6. Key Terms
    7. Section Summary
    8. Key Equations
    9. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    10. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  21. 20 Magnetism
    1. Introduction
    2. 20.1 Magnetic Fields, Field Lines, and Force
    3. 20.2 Motors, Generators, and Transformers
    4. 20.3 Electromagnetic Induction
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  22. 21 The Quantum Nature of Light
    1. Introduction
    2. 21.1 Planck and Quantum Nature of Light
    3. 21.2 Einstein and the Photoelectric Effect
    4. 21.3 The Dual Nature of Light
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  23. 22 The Atom
    1. Introduction
    2. 22.1 The Structure of the Atom
    3. 22.2 Nuclear Forces and Radioactivity
    4. 22.3 Half Life and Radiometric Dating
    5. 22.4 Nuclear Fission and Fusion
    6. 22.5 Medical Applications of Radioactivity: Diagnostic Imaging and Radiation
    7. Key Terms
    8. Section Summary
    9. Key Equations
    10. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Performance Task
    11. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  24. 23 Particle Physics
    1. Introduction
    2. 23.1 The Four Fundamental Forces
    3. 23.2 Quarks
    4. 23.3 The Unification of Forces
    5. Key Terms
    6. Section Summary
    7. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Performance Task
    8. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  25. A | Reference Tables
  26. Index

Concept Items

20.1 Magnetic Fields, Field Lines, and Force

1 .
If you place a small needle between the north poles of two bar magnets, will the needle become magnetized?
  1. Yes, the magnetic fields from the two north poles will point in the same directions.
  2. Yes, the magnetic fields from the two north poles will point in opposite directions.
  3. No, the magnetic fields from the two north poles will point in opposite directions.
  4. No, the magnetic fields from the two north poles will point in the same directions.
2.

If you place a compass at the three points in the figure, at which point will the needle experience the greatest torque? Why?

An image of a bar magnet with the north side on top of the south side. Magnetic field lines are shown going from north to south. Point A is located above and close to the north side. Point B is right of the magnet between the two poles. Point C is below and away from the south side.
  1. The density of the magnetic field is minimized at B, so the magnetic compass needle will experience the greatest torque at B.
  2. The density of the magnetic field is minimized at C, so the magnetic compass needle will experience the greatest torque at C.
  3. The density of the magnetic field is maximized at B, so the magnetic compass needle will experience the greatest torque at B.
  4. The density of the magnetic field is maximized at A, so the magnetic compass needle will experience the greatest torque at A.
3 .
In which direction do the magnetic field lines point outside the south pole of a magnet?
  1. Outside the magnet the direction of magnetic field lines is towards the south pole of the magnet.
  2. Outside the magnet the direction of magnetic field lines is away from the south pole of the magnet.

20.2 Motors, Generators, and Transformers

4 .
Consider the angle between the area vector and the magnetic field in an electric motor. At what angles is the torque on the wire loop the greatest?
  1. 0 ∘ and 180 ∘
  2. 45 ∘ and 135 ∘
  3. 90 ∘ and 270 ∘
  4. 225 ∘ and 315 ∘
5.

What is a voltage transformer?

  1. A transformer is a device that transforms current to voltage.
  2. A transformer is a device that transforms voltages from one value to another.
  3. A transformer is a device that transforms resistance of wire to voltage.
6.

Why is electric power transmitted at high voltage?

  1. To increase the current for the transmission
  2. To reduce energy loss during transmission
  3. To increase resistance during transmission
  4. To reduce resistance during transmission

20.3 Electromagnetic Induction

7.

Yes or no—Is an emf induced in the coil shown when it is stretched? If so, state why and give the direction of the induced current.

Two images of a circular wire embedded in a magnetic field that is pointing into the page. The left figure shows the circular wire enclosing four of the magnetic field points with two hands on either end pulling on the wire initially shaped like a circle. The image on the right shows the same wire stretched out into an ellipse.
  1. No, because induced current does not depend upon the area of the coil.
  2. Yes, because area of the coil decreases; the direction of the induced current is counterclockwise.
  3. Yes, because area of the coil decreases; the direction of the induced current is clockwise.
  4. Yes, because the area of the coil does not change; the direction of the induced current is clockwise.
8 .
What is Lenz’s law?
  1. If induced current flows, its direction is such that it adds to the changes which induced it.
  2. If induced current flows, its direction is such that it opposes the changes which induced it.
  3. If induced current flows, its direction is always clockwise to the changes which induced it.
  4. If induced current flows, its direction is always counterclockwise to the changes which induced it.
9.

Explain how magnetic flux can be zero when the magnetic field is not zero.

  1. If angle between magnetic field and area vector is 0°, then its sine is also zero, which means that there is zero flux.
  2. If angle between magnetic field and area vector is 45°, then its sine is also zero, which means that there is zero flux.
  3. If angle between magnetic field and area vector is 60°, then its cosine is also zero, which means that there is zero flux.
  4. If the angle between magnetic field and area vector is 90°, then its cosine is also zero, which means that there is zero flux.
Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute Texas Education Agency (TEA). The original material is available at: https://www.texasgateway.org/book/tea-physics . Changes were made to the original material, including updates to art, structure, and other content updates.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/physics/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/physics/pages/1-introduction
Citation information

© Jun 24, 2023 Texas Education Agency (TEA). The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.