Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Physics

Problems

PhysicsProblems

Problems

17.1 Understanding Diffraction and Interference

9.

What is the distance between two slits that produce a diffraction pattern with the first minimum at an angle of 45.0° when 410-nm violet light passes through the slits?

  1. 2,030 nm
  2. 1,450 nm
  3. 410 nm
  4. 290 nm
10.

A breakwater at the entrance to a harbor consists of a rock barrier with a 50.0 − m -wide opening. Ocean waves with a 20.0-m wavelength approach the opening straight on. At what angle to the incident direction are the boats inside the harbor most protected against wave action?

  1. 11.5°
  2. 7.46°
  3. 5.74°
  4. 23.6°

17.2 Applications of Diffraction, Interference, and Coherence

11.

A 500-nm beam of light passing through a diffraction grating creates its second band of constructive interference at an angle of 1.50°. How far apart are the slits in the grating?

  1. 38,200 nm
  2. 19,100 nm
  3. 667 nm
  4. 333 nm
12.

The range of the visible-light spectrum is 380 nm to 780 nm. What is the maximum number of lines per centimeter a diffraction grating can have and produce a complete first-order spectrum for visible light?

  1. 26,300 lines/cm
  2. 13,200 lines/cm
  3. 6,410 lines/cm
  4. 12,820 lines/cm
Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute Texas Education Agency (TEA). The original material is available at: https://www.texasgateway.org/book/tea-physics . Changes were made to the original material, including updates to art, structure, and other content updates.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/physics/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/physics/pages/1-introduction
Citation information

© Jan 19, 2024 Texas Education Agency (TEA). The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.