Extended Response
17.1 Understanding Diffraction and Interference
-
No, the color is determined by frequency. The magnitude of the angle decreases.
-
No, the color is determined by wavelength. The magnitude of the angle decreases.
-
Yes, the color is determined by frequency. The magnitude of the angle increases.
-
Yes, the color is determined by wavelength. The magnitude of the angle increases.
A double slit is located at a distance x from a screen, with the distance along the screen from the center given by y . When the distance d between the slits is relatively large, there will be numerous bright bands.
For small angles (where sinθ = θ, with θ in radians), what is the distance between fringes?
17.2 Applications of Diffraction, Interference, and Coherence
-
All three interference pattern produce identical bands.
-
A double slit produces the sharpest and most distinct bands.
-
A single slit produces the sharpest and most distinct bands.
-
The diffraction grating produces the sharpest and most distinct bands.
-
\lambda_1=\left(10^3\,\text{nm}\right)\sin 24.2^{\circ}=410\,\text{nm} \lambda_2=\left(10^3\,\text{nm}\right)\sin 25.7^{\circ}=434\,\text{nm} \lambda_3=\left(10^3\,\text{nm}\right)\sin 29.1^{\circ}=486\,\text{nm} \lambda_4=\left(10^3\,\text{nm}\right)\sin 41.0^{\circ}=656\,\text{nm}
-
\lambda_1=\left(10^3\,\text{nm}\right)\sin 41.0^{\circ}=410\,\text{nm} \lambda_2=\left(10^3\,\text{nm}\right)\sin 25.7^{\circ}=434\,\text{nm} \lambda_3=\left(10^3\,\text{nm}\right)\sin 29.1^{\circ}=486\,\text{nm} \lambda_4=\left(10^3\,\text{nm}\right)\sin 24.2^{\circ}=656\,\text{nm}
-
\lambda_1=\left(10^3\,\text{nm}\right)\sin 24.2^{\circ}=410\,\text{nm} \lambda_2=\left(10^3\,\text{nm}\right)\sin 29.1^{\circ}=434\,\text{nm} \lambda_3=\left(10^3\,\text{nm}\right)\sin 25.7^{\circ}=486\,\text{nm} \lambda_4=\left(10^3\,\text{nm}\right)\sin 41.0^{\circ}=656\,\text{nm}
-
\lambda_1=\left(10^3\,\text{nm}\right)\sin 41.0^{\circ}=410\,\text{nm} \lambda_2=\left(10^3\,\text{nm}\right)\sin 29.1^{\circ}=434\,\text{nm} \lambda_3=\left(10^3\,\text{nm}\right)\sin 25.7^{\circ}=486\,\text{nm} \lambda_4=\left(10^3\,\text{nm}\right)\sin 24.2^{\circ}=656\,\text{nm}