Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo

31 • Summary

31 • Summary

Synthetic polymers can be classified as either chain-growth or step-growth. Chain-growth polymers are prepared by chain-reaction polymerization of vinyl monomers in the presence of a radical, an anion, or a cation initiator. Radical polymerization is sometimes used, but alkenes such as 2-methylpropene that have electron-donating substituents on the double bond polymerize easily by a cationic route through carbocation intermediates. Similarly, monomers such as methyl α-cyanoacrylate that have electron-withdrawing substituents on the double bond polymerize by an anionic, conjugate addition pathway.

Copolymerization of two monomers gives a product with properties different from those of either homopolymer. Graft copolymers and block copolymers are two examples.

Alkene polymerization can be carried out in a controlled manner using a Ziegler–Natta catalyst. Ziegler–Natta polymerization minimizes the amount of chain branching in the polymer and leads to stereoregular chains—either isotactic (substituents on the same side of the chain) or syndiotactic (substituents on alternate sides of the chain), rather than atactic (substituents randomly disposed).

Step-growth polymers, the second major class of polymers, are prepared by reactions between difunctional molecules, with individual bonds in the polymer formed independently of one another. Polycarbonates are formed from a diester and a diol, and polyurethanes are formed from a diisocyanate and a diol.

The chemistry of synthetic polymers is similar to the chemistry of small molecules with the same functional groups, but the physical properties of polymers are greatly affected by size. Polymers can be classified by physical property into four groups: thermoplastics, fibers, elastomers, and thermosetting resins. The properties of each group can be accounted for by the structure, the degree of crystallinity, and the amount of cross-linking they contain.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution-NonCommercial-ShareAlike License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/organic-chemistry/pages/1-why-this-chapter
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/organic-chemistry/pages/1-why-this-chapter
Citation information

© Aug 5, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.