Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Organic Chemistry

Additional Problems

Organic ChemistryAdditional Problems

Table of contents
  1. Dedication and Preface
  2. 1 Structure and Bonding
    1. Why This Chapter?
    2. 1.1 Atomic Structure: The Nucleus
    3. 1.2 Atomic Structure: Orbitals
    4. 1.3 Atomic Structure: Electron Configurations
    5. 1.4 Development of Chemical Bonding Theory
    6. 1.5 Describing Chemical Bonds: Valence Bond Theory
    7. 1.6 sp3 Hybrid Orbitals and the Structure of Methane
    8. 1.7 sp3 Hybrid Orbitals and the Structure of Ethane
    9. 1.8 sp2 Hybrid Orbitals and the Structure of Ethylene
    10. 1.9 sp Hybrid Orbitals and the Structure of Acetylene
    11. 1.10 Hybridization of Nitrogen, Oxygen, Phosphorus, and Sulfur
    12. 1.11 Describing Chemical Bonds: Molecular Orbital Theory
    13. 1.12 Drawing Chemical Structures
    14. Chemistry Matters—Organic Foods: Risk versus Benefit
    15. Key Terms
    16. Summary
    17. Additional Problems
  3. 2 Polar Covalent Bonds; Acids and Bases
    1. Why This Chapter?
    2. 2.1 Polar Covalent Bonds and Electronegativity
    3. 2.2 Polar Covalent Bonds and Dipole Moments
    4. 2.3 Formal Charges
    5. 2.4 Resonance
    6. 2.5 Rules for Resonance Forms
    7. 2.6 Drawing Resonance Forms
    8. 2.7 Acids and Bases: The Brønsted–Lowry Definition
    9. 2.8 Acid and Base Strength
    10. 2.9 Predicting Acid–Base Reactions from pKa Values
    11. 2.10 Organic Acids and Organic Bases
    12. 2.11 Acids and Bases: The Lewis Definition
    13. 2.12 Noncovalent Interactions between Molecules
    14. Chemistry Matters—Alkaloids: From Cocaine to Dental Anesthetics
    15. Key Terms
    16. Summary
    17. Additional Problems
  4. 3 Organic Compounds: Alkanes and Their Stereochemistry
    1. Why This Chapter?
    2. 3.1 Functional Groups
    3. 3.2 Alkanes and Alkane Isomers
    4. 3.3 Alkyl Groups
    5. 3.4 Naming Alkanes
    6. 3.5 Properties of Alkanes
    7. 3.6 Conformations of Ethane
    8. 3.7 Conformations of Other Alkanes
    9. Chemistry Matters—Gasoline
    10. Key Terms
    11. Summary
    12. Additional Problems
  5. 4 Organic Compounds: Cycloalkanes and Their Stereochemistry
    1. Why This Chapter?
    2. 4.1 Naming Cycloalkanes
    3. 4.2 Cis–Trans Isomerism in Cycloalkanes
    4. 4.3 Stability of Cycloalkanes: Ring Strain
    5. 4.4 Conformations of Cycloalkanes
    6. 4.5 Conformations of Cyclohexane
    7. 4.6 Axial and Equatorial Bonds in Cyclohexane
    8. 4.7 Conformations of Monosubstituted Cyclohexanes
    9. 4.8 Conformations of Disubstituted Cyclohexanes
    10. 4.9 Conformations of Polycyclic Molecules
    11. Chemistry Matters—Molecular Mechanics
    12. Key Terms
    13. Summary
    14. Additional Problems
  6. 5 Stereochemistry at Tetrahedral Centers
    1. Why This Chapter?
    2. 5.1 Enantiomers and the Tetrahedral Carbon
    3. 5.2 The Reason for Handedness in Molecules: Chirality
    4. 5.3 Optical Activity
    5. 5.4 Pasteur’s Discovery of Enantiomers
    6. 5.5 Sequence Rules for Specifying Configuration
    7. 5.6 Diastereomers
    8. 5.7 Meso Compounds
    9. 5.8 Racemic Mixtures and the Resolution of Enantiomers
    10. 5.9 A Review of Isomerism
    11. 5.10 Chirality at Nitrogen, Phosphorus, and Sulfur
    12. 5.11 Prochirality
    13. 5.12 Chirality in Nature and Chiral Environments
    14. Chemistry Matters—Chiral Drugs
    15. Key Terms
    16. Summary
    17. Additional Problems
  7. 6 An Overview of Organic Reactions
    1. Why This Chapter?
    2. 6.1 Kinds of Organic Reactions
    3. 6.2 How Organic Reactions Occur: Mechanisms
    4. 6.3 Polar Reactions
    5. 6.4 An Example of a Polar Reaction: Addition of HBr to Ethylene
    6. 6.5 Using Curved Arrows in Polar Reaction Mechanisms
    7. 6.6 Radical Reactions
    8. 6.7 Describing a Reaction: Equilibria, Rates, and Energy Changes
    9. 6.8 Describing a Reaction: Bond Dissociation Energies
    10. 6.9 Describing a Reaction: Energy Diagrams and Transition States
    11. 6.10 Describing a Reaction: Intermediates
    12. 6.11 A Comparison Between Biological Reactions and Laboratory Reactions
    13. Chemistry Matters—Where Do Drugs Come From?
    14. Key Terms
    15. Summary
    16. Additional Problems
  8. 7 Alkenes: Structure and Reactivity
    1. Why This Chapter?
    2. 7.1 Industrial Preparation and Use of Alkenes
    3. 7.2 Calculating the Degree of Unsaturation
    4. 7.3 Naming Alkenes
    5. 7.4 Cis–Trans Isomerism in Alkenes
    6. 7.5 Alkene Stereochemistry and the E,Z Designation
    7. 7.6 Stability of Alkenes
    8. 7.7 Electrophilic Addition Reactions of Alkenes
    9. 7.8 Orientation of Electrophilic Additions: Markovnikov’s Rule
    10. 7.9 Carbocation Structure and Stability
    11. 7.10 The Hammond Postulate
    12. 7.11 Evidence for the Mechanism of Electrophilic Additions: Carbocation Rearrangements
    13. Chemistry Matters—Bioprospecting: Hunting for Natural Products
    14. Key Terms
    15. Summary
    16. Additional Problems
  9. 8 Alkenes: Reactions and Synthesis
    1. Why This Chapter?
    2. 8.1 Preparing Alkenes: A Preview of Elimination Reactions
    3. 8.2 Halogenation of Alkenes: Addition of X2
    4. 8.3 Halohydrins from Alkenes: Addition of HO-X
    5. 8.4 Hydration of Alkenes: Addition of H2O by Oxymercuration
    6. 8.5 Hydration of Alkenes: Addition of H2O by Hydroboration
    7. 8.6 Reduction of Alkenes: Hydrogenation
    8. 8.7 Oxidation of Alkenes: Epoxidation and Hydroxylation
    9. 8.8 Oxidation of Alkenes: Cleavage to Carbonyl Compounds
    10. 8.9 Addition of Carbenes to Alkenes: Cyclopropane Synthesis
    11. 8.10 Radical Additions to Alkenes: Chain-Growth Polymers
    12. 8.11 Biological Additions of Radicals to Alkenes
    13. 8.12 Reaction Stereochemistry: Addition of H2O to an Achiral Alkene
    14. 8.13 Reaction Stereochemistry: Addition of H2O to a Chiral Alkene
    15. Chemistry Matters—Terpenes: Naturally Occurring Alkenes
    16. Key Terms
    17. Summary
    18. Summary of Reactions
    19. Additional Problems
  10. 9 Alkynes: An Introduction to Organic Synthesis
    1. Why This Chapter?
    2. 9.1 Naming Alkynes
    3. 9.2 Preparation of Alkynes: Elimination Reactions of Dihalides
    4. 9.3 Reactions of Alkynes: Addition of HX and X2
    5. 9.4 Hydration of Alkynes
    6. 9.5 Reduction of Alkynes
    7. 9.6 Oxidative Cleavage of Alkynes
    8. 9.7 Alkyne Acidity: Formation of Acetylide Anions
    9. 9.8 Alkylation of Acetylide Anions
    10. 9.9 An Introduction to Organic Synthesis
    11. Chemistry Matters—The Art of Organic Synthesis
    12. Key Terms
    13. Summary
    14. Summary of Reactions
    15. Additional Problems
  11. 10 Organohalides
    1. Why This Chapter?
    2. 10.1 Names and Structures of Alkyl Halides
    3. 10.2 Preparing Alkyl Halides from Alkanes: Radical Halogenation
    4. 10.3 Preparing Alkyl Halides from Alkenes: Allylic Bromination
    5. 10.4 Stability of the Allyl Radical: Resonance Revisited
    6. 10.5 Preparing Alkyl Halides from Alcohols
    7. 10.6 Reactions of Alkyl Halides: Grignard Reagents
    8. 10.7 Organometallic Coupling Reactions
    9. 10.8 Oxidation and Reduction in Organic Chemistry
    10. Chemistry Matters—Naturally Occurring Organohalides
    11. Key Terms
    12. Summary
    13. Summary of Reactions
    14. Additional Problems
  12. 11 Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations
    1. Why This Chapter?
    2. 11.1 The Discovery of Nucleophilic Substitution Reactions
    3. 11.2 The SN2 Reaction
    4. 11.3 Characteristics of the SN2 Reaction
    5. 11.4 The SN1 Reaction
    6. 11.5 Characteristics of the SN1 Reaction
    7. 11.6 Biological Substitution Reactions
    8. 11.7 Elimination Reactions: Zaitsev’s Rule
    9. 11.8 The E2 Reaction and the Deuterium Isotope Effect
    10. 11.9 The E2 Reaction and Cyclohexane Conformation
    11. 11.10 The E1 and E1cB Reactions
    12. 11.11 Biological Elimination Reactions
    13. 11.12 A Summary of Reactivity: SN1, SN2, E1, E1cB, and E2
    14. Chemistry Matters—Green Chemistry
    15. Key Terms
    16. Summary
    17. Summary of Reactions
    18. Additional Problems
  13. 12 Structure Determination: Mass Spectrometry and Infrared Spectroscopy
    1. Why This Chapter?
    2. 12.1 Mass Spectrometry of Small Molecules: Magnetic-Sector Instruments
    3. 12.2 Interpreting Mass Spectra
    4. 12.3 Mass Spectrometry of Some Common Functional Groups
    5. 12.4 Mass Spectrometry in Biological Chemistry: Time-of-Flight (TOF) Instruments
    6. 12.5 Spectroscopy and the Electromagnetic Spectrum
    7. 12.6 Infrared Spectroscopy
    8. 12.7 Interpreting Infrared Spectra
    9. 12.8 Infrared Spectra of Some Common Functional Groups
    10. Chemistry Matters—X-Ray Crystallography
    11. Key Terms
    12. Summary
    13. Additional Problems
  14. 13 Structure Determination: Nuclear Magnetic Resonance Spectroscopy
    1. Why This Chapter?
    2. 13.1 Nuclear Magnetic Resonance Spectroscopy
    3. 13.2 The Nature of NMR Absorptions
    4. 13.3 Chemical Shifts
    5. 13.4 Chemical Shifts in 1H NMR Spectroscopy
    6. 13.5 Integration of 1H NMR Absorptions: Proton Counting
    7. 13.6 Spin–Spin Splitting in 1H NMR Spectra
    8. 13.7 1H NMR Spectroscopy and Proton Equivalence
    9. 13.8 More Complex Spin–Spin Splitting Patterns
    10. 13.9 Uses of 1H NMR Spectroscopy
    11. 13.10 13C NMR Spectroscopy: Signal Averaging and FT–NMR
    12. 13.11 Characteristics of 13C NMR Spectroscopy
    13. 13.12 DEPT 13C NMR Spectroscopy
    14. 13.13 Uses of 13C NMR Spectroscopy
    15. Chemistry Matters—Magnetic Resonance Imaging (MRI)
    16. Key Terms
    17. Summary
    18. Additional Problems
  15. 14 Conjugated Compounds and Ultraviolet Spectroscopy
    1. Why This Chapter?
    2. 14.1 Stability of Conjugated Dienes: Molecular Orbital Theory
    3. 14.2 Electrophilic Additions to Conjugated Dienes: Allylic Carbocations
    4. 14.3 Kinetic versus Thermodynamic Control of Reactions
    5. 14.4 The Diels–Alder Cycloaddition Reaction
    6. 14.5 Characteristics of the Diels–Alder Reaction
    7. 14.6 Diene Polymers: Natural and Synthetic Rubbers
    8. 14.7 Ultraviolet Spectroscopy
    9. 14.8 Interpreting Ultraviolet Spectra: The Effect of Conjugation
    10. 14.9 Conjugation, Color, and the Chemistry of Vision
    11. Chemistry Matters—Photolithography
    12. Key Terms
    13. Summary
    14. Summary of Reactions
    15. Additional Problems
  16. 15 Benzene and Aromaticity
    1. Why This Chapter?
    2. 15.1 Naming Aromatic Compounds
    3. 15.2 Structure and Stability of Benzene
    4. 15.3 Aromaticity and the Hückel 4n + 2 Rule
    5. 15.4 Aromatic Ions
    6. 15.5 Aromatic Heterocycles: Pyridine and Pyrrole
    7. 15.6 Polycyclic Aromatic Compounds
    8. 15.7 Spectroscopy of Aromatic Compounds
    9. Chemistry Matters—Aspirin, NSAIDs, and COX-2 Inhibitors
    10. Key Terms
    11. Summary
    12. Additional Problems
  17. 16 Chemistry of Benzene: Electrophilic Aromatic Substitution
    1. Why This Chapter?
    2. 16.1 Electrophilic Aromatic Substitution Reactions: Bromination
    3. 16.2 Other Aromatic Substitutions
    4. 16.3 Alkylation and Acylation of Aromatic Rings: The Friedel–Crafts Reaction
    5. 16.4 Substituent Effects in Electrophilic Substitutions
    6. 16.5 Trisubstituted Benzenes: Additivity of Effects
    7. 16.6 Nucleophilic Aromatic Substitution
    8. 16.7 Benzyne
    9. 16.8 Oxidation of Aromatic Compounds
    10. 16.9 Reduction of Aromatic Compounds
    11. 16.10 Synthesis of Polysubstituted Benzenes
    12. Chemistry Matters—Combinatorial Chemistry
    13. Key Terms
    14. Summary
    15. Summary of Reactions
    16. Additional Problems
  18. 17 Alcohols and Phenols
    1. Why This Chapter?
    2. 17.1 Naming Alcohols and Phenols
    3. 17.2 Properties of Alcohols and Phenols
    4. 17.3 Preparation of Alcohols: A Review
    5. 17.4 Alcohols from Carbonyl Compounds: Reduction
    6. 17.5 Alcohols from Carbonyl Compounds: Grignard Reaction
    7. 17.6 Reactions of Alcohols
    8. 17.7 Oxidation of Alcohols
    9. 17.8 Protection of Alcohols
    10. 17.9 Phenols and Their Uses
    11. 17.10 Reactions of Phenols
    12. 17.11 Spectroscopy of Alcohols and Phenols
    13. Chemistry Matters—Ethanol: Chemical, Drug, and Poison
    14. Key Terms
    15. Summary
    16. Summary of Reactions
    17. Additional Problems
  19. 18 Ethers and Epoxides; Thiols and Sulfides
    1. Why This Chapter?
    2. 18.1 Names and Properties of Ethers
    3. 18.2 Preparing Ethers
    4. 18.3 Reactions of Ethers: Acidic Cleavage
    5. 18.4 Cyclic Ethers: Epoxides
    6. 18.5 Reactions of Epoxides: Ring-Opening
    7. 18.6 Crown Ethers
    8. 18.7 Thiols and Sulfides
    9. 18.8 Spectroscopy of Ethers
    10. Chemistry Matters—Epoxy Resins and Adhesives
    11. Key Terms
    12. Summary
    13. Summary of Reactions
    14. Additional Problems
    15. Preview of Carbonyl Chemistry
  20. 19 Aldehydes and Ketones: Nucleophilic Addition Reactions
    1. Why This Chapter?
    2. 19.1 Naming Aldehydes and Ketones
    3. 19.2 Preparing Aldehydes and Ketones
    4. 19.3 Oxidation of Aldehydes and Ketones
    5. 19.4 Nucleophilic Addition Reactions of Aldehydes and Ketones
    6. 19.5 Nucleophilic Addition of H2O: Hydration
    7. 19.6 Nucleophilic Addition of HCN: Cyanohydrin Formation
    8. 19.7 Nucleophilic Addition of Hydride and Grignard Reagents: Alcohol Formation
    9. 19.8 Nucleophilic Addition of Amines: Imine and Enamine Formation
    10. 19.9 Nucleophilic Addition of Hydrazine: The Wolff–Kishner Reaction
    11. 19.10 Nucleophilic Addition of Alcohols: Acetal Formation
    12. 19.11 Nucleophilic Addition of Phosphorus Ylides: The Wittig Reaction
    13. 19.12 Biological Reductions
    14. 19.13 Conjugate Nucleophilic Addition to α,β‑Unsaturated Aldehydes and Ketones
    15. 19.14 Spectroscopy of Aldehydes and Ketones
    16. Chemistry Matters—Enantioselective Synthesis
    17. Key Terms
    18. Summary
    19. Summary of Reactions
    20. Additional Problems
  21. 20 Carboxylic Acids and Nitriles
    1. Why This Chapter?
    2. 20.1 Naming Carboxylic Acids and Nitriles
    3. 20.2 Structure and Properties of Carboxylic Acids
    4. 20.3 Biological Acids and the Henderson–Hasselbalch Equation
    5. 20.4 Substituent Effects on Acidity
    6. 20.5 Preparing Carboxylic Acids
    7. 20.6 Reactions of Carboxylic Acids: An Overview
    8. 20.7 Chemistry of Nitriles
    9. 20.8 Spectroscopy of Carboxylic Acids and Nitriles
    10. Chemistry Matters—Vitamin C
    11. Key Terms
    12. Summary
    13. Summary of Reactions
    14. Additional Problems
  22. 21 Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions
    1. Why This Chapter?
    2. 21.1 Naming Carboxylic Acid Derivatives
    3. 21.2 Nucleophilic Acyl Substitution Reactions
    4. 21.3 Reactions of Carboxylic Acids
    5. 21.4 Chemistry of Acid Halides
    6. 21.5 Chemistry of Acid Anhydrides
    7. 21.6 Chemistry of Esters
    8. 21.7 Chemistry of Amides
    9. 21.8 Chemistry of Thioesters and Acyl Phosphates: Biological Carboxylic Acid Derivatives
    10. 21.9 Polyamides and Polyesters: Step-Growth Polymers
    11. 21.10 Spectroscopy of Carboxylic Acid Derivatives
    12. Chemistry Matters—β-Lactam Antibiotics
    13. Key Terms
    14. Summary
    15. Summary of Reactions
    16. Additional Problems
  23. 22 Carbonyl Alpha-Substitution Reactions
    1. Why This Chapter?
    2. 22.1 Keto–Enol Tautomerism
    3. 22.2 Reactivity of Enols: α-Substitution Reactions
    4. 22.3 Alpha Halogenation of Aldehydes and Ketones
    5. 22.4 Alpha Bromination of Carboxylic Acids
    6. 22.5 Acidity of Alpha Hydrogen Atoms: Enolate Ion Formation
    7. 22.6 Reactivity of Enolate Ions
    8. 22.7 Alkylation of Enolate Ions
    9. Chemistry Matters—Barbiturates
    10. Key Terms
    11. Summary
    12. Summary of Reactions
    13. Additional Problems
  24. 23 Carbonyl Condensation Reactions
    1. Why This Chapter?
    2. 23.1 Carbonyl Condensations: The Aldol Reaction
    3. 23.2 Carbonyl Condensations versus Alpha Substitutions
    4. 23.3 Dehydration of Aldol Products: Synthesis of Enones
    5. 23.4 Using Aldol Reactions in Synthesis
    6. 23.5 Mixed Aldol Reactions
    7. 23.6 Intramolecular Aldol Reactions
    8. 23.7 The Claisen Condensation Reaction
    9. 23.8 Mixed Claisen Condensations
    10. 23.9 Intramolecular Claisen Condensations: The Dieckmann Cyclization
    11. 23.10 Conjugate Carbonyl Additions: The Michael Reaction
    12. 23.11 Carbonyl Condensations with Enamines: The Stork Enamine Reaction
    13. 23.12 The Robinson Annulation Reaction
    14. 23.13 Some Biological Carbonyl Condensation Reactions
    15. Chemistry Matters—A Prologue to Metabolism
    16. Key Terms
    17. Summary
    18. Summary of Reactions
    19. Additional Problems
  25. 24 Amines and Heterocycles
    1. Why This Chapter?
    2. 24.1 Naming Amines
    3. 24.2 Structure and Properties of Amines
    4. 24.3 Basicity of Amines
    5. 24.4 Basicity of Arylamines
    6. 24.5 Biological Amines and the Henderson–Hasselbalch Equation
    7. 24.6 Synthesis of Amines
    8. 24.7 Reactions of Amines
    9. 24.8 Reactions of Arylamines
    10. 24.9 Heterocyclic Amines
    11. 24.10 Spectroscopy of Amines
    12. Chemistry Matters—Green Chemistry II: Ionic Liquids
    13. Key Terms
    14. Summary
    15. Summary of Reactions
    16. Additional Problems
  26. 25 Biomolecules: Carbohydrates
    1. Why This Chapter?
    2. 25.1 Classification of Carbohydrates
    3. 25.2 Representing Carbohydrate Stereochemistry: Fischer Projections
    4. 25.3 D,L Sugars
    5. 25.4 Configurations of the Aldoses
    6. 25.5 Cyclic Structures of Monosaccharides: Anomers
    7. 25.6 Reactions of Monosaccharides
    8. 25.7 The Eight Essential Monosaccharides
    9. 25.8 Disaccharides
    10. 25.9 Polysaccharides and Their Synthesis
    11. 25.10 Some Other Important Carbohydrates
    12. Chemistry Matters—Sweetness
    13. Key Terms
    14. Summary
    15. Summary of Reactions
    16. Additional Problems
  27. 26 Biomolecules: Amino Acids, Peptides, and Proteins
    1. Why This Chapter?
    2. 26.1 Structures of Amino Acids
    3. 26.2 Amino Acids and the Henderson–Hasselbalch Equation: Isoelectric Points
    4. 26.3 Synthesis of Amino Acids
    5. 26.4 Peptides and Proteins
    6. 26.5 Amino Acid Analysis of Peptides
    7. 26.6 Peptide Sequencing: The Edman Degradation
    8. 26.7 Peptide Synthesis
    9. 26.8 Automated Peptide Synthesis: The Merrifield Solid-Phase Method
    10. 26.9 Protein Structure
    11. 26.10 Enzymes and Coenzymes
    12. 26.11 How Do Enzymes Work? Citrate Synthase
    13. Chemistry Matters—The Protein Data Bank
    14. Key Terms
    15. Summary
    16. Summary of Reactions
    17. Additional Problems
  28. 27 Biomolecules: Lipids
    1. Why This Chapter?
    2. 27.1 Waxes, Fats, and Oils
    3. 27.2 Soap
    4. 27.3 Phospholipids
    5. 27.4 Prostaglandins and Other Eicosanoids
    6. 27.5 Terpenoids
    7. 27.6 Steroids
    8. 27.7 Biosynthesis of Steroids
    9. Chemistry Matters—Saturated Fats, Cholesterol, and Heart Disease
    10. Key Terms
    11. Summary
    12. Additional Problems
  29. 28 Biomolecules: Nucleic Acids
    1. Why This Chapter?
    2. 28.1 Nucleotides and Nucleic Acids
    3. 28.2 Base Pairing in DNA
    4. 28.3 Replication of DNA
    5. 28.4 Transcription of DNA
    6. 28.5 Translation of RNA: Protein Biosynthesis
    7. 28.6 DNA Sequencing
    8. 28.7 DNA Synthesis
    9. 28.8 The Polymerase Chain Reaction
    10. Chemistry Matters—DNA Fingerprinting
    11. Key Terms
    12. Summary
    13. Additional Problems
  30. 29 The Organic Chemistry of Metabolic Pathways
    1. Why This Chapter?
    2. 29.1 An Overview of Metabolism and Biochemical Energy
    3. 29.2 Catabolism of Triacylglycerols: The Fate of Glycerol
    4. 29.3 Catabolism of Triacylglycerols: β-Oxidation
    5. 29.4 Biosynthesis of Fatty Acids
    6. 29.5 Catabolism of Carbohydrates: Glycolysis
    7. 29.6 Conversion of Pyruvate to Acetyl CoA
    8. 29.7 The Citric Acid Cycle
    9. 29.8 Carbohydrate Biosynthesis: Gluconeogenesis
    10. 29.9 Catabolism of Proteins: Deamination
    11. 29.10 Some Conclusions about Biological Chemistry
    12. Chemistry Matters—Statin Drugs
    13. Key Terms
    14. Summary
    15. Additional Problems
  31. 30 Orbitals and Organic Chemistry: Pericyclic Reactions
    1. Why This Chapter?
    2. 30.1 Molecular Orbitals of Conjugated Pi Systems
    3. 30.2 Electrocyclic Reactions
    4. 30.3 Stereochemistry of Thermal Electrocyclic Reactions
    5. 30.4 Photochemical Electrocyclic Reactions
    6. 30.5 Cycloaddition Reactions
    7. 30.6 Stereochemistry of Cycloadditions
    8. 30.7 Sigmatropic Rearrangements
    9. 30.8 Some Examples of Sigmatropic Rearrangements
    10. 30.9 A Summary of Rules for Pericyclic Reactions
    11. Chemistry Matters—Vitamin D, the Sunshine Vitamin
    12. Key Terms
    13. Summary
    14. Additional Problems
  32. 31 Synthetic Polymers
    1. Why This Chapter?
    2. 31.1 Chain-Growth Polymers
    3. 31.2 Stereochemistry of Polymerization: Ziegler–Natta Catalysts
    4. 31.3 Copolymers
    5. 31.4 Step-Growth Polymers
    6. 31.5 Olefin Metathesis Polymerization
    7. 31.6 Intramolecular Olefin Metathesis
    8. 31.7 Polymer Structure and Physical Properties
    9. Chemistry Matters—Degradable Polymers
    10. Key Terms
    11. Summary
    12. Additional Problems
  33. A | Nomenclature of Polyfunctional Organic Compounds
  34. B | Acidity Constants for Some Organic Compounds
  35. C | Glossary
  36. D | Periodic Table
  37. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
    11. Chapter 11
    12. Chapter 12
    13. Chapter 13
    14. Chapter 14
    15. Chapter 15
    16. Chapter 16
    17. Chapter 17
    18. Chapter 18
    19. Chapter 19
    20. Chapter 20
    21. Chapter 21
    22. Chapter 22
    23. Chapter 23
    24. Chapter 24
    25. Chapter 25
    26. Chapter 26
    27. Chapter 27
    28. Chapter 28
    29. Chapter 29
    30. Chapter 30
    31. Chapter 31
  38. Index

25 • Additional Problems

25 • Additional Problems

Visualizing Chemistry

Problem 25-26
Identify the following aldoses, and tell whether each is a D or L sugar:
(a)
The ball-and-stick model of a four-carbon aldose. The gray, black, and red spheres represent hydrogen, carbon, and oxygen atoms, respectively.
(b)
The ball-and-stick model of a pyranose. The gray, black, and red spheres represent hydrogen, carbon, and oxygen atoms, respectively.
Problem 25-27
Draw Fischer projections of the following molecules, placing the carbonyl group at the top in the usual way. Identify each as a D or L sugar.
(a)
The ball-and-stick model of a three carbon aldose. The gray, black, and red spheres represent hydrogen, carbon, and oxygen atoms, respectively.
(b)
The ball-and-stick model of a four carbon aldose. The gray, black, and red spheres represent hydrogen, carbon, and oxygen atoms, respectively.
Problem 25-28

The following structure is that of an L aldohexose in its pyranose form. Identify it, and tell whether it is an α or β anomer.

The ball-and-stick model of a beta pyranose with three equatorial O H groups. The gray, black, and red spheres represent hydrogen, carbon, and oxygen atoms, respectively.
Problem 25-29

The following model is that of an aldohexose:

The ball-and-stick model of an aldohexose. The gray, black, and red spheres represent hydrogen, carbon, and oxygen atoms, respectively.
(a)
Draw Fischer projections of the sugar, its enantiomer, and a diastereomer.
(b)
Is this a D sugar or an L sugar? Explain.
(c)
Draw the β anomer of the sugar in its furanose form.

Mechanism Problems

Problem 25-30

Galactose, one of the eight essential monosaccharides (Section 25.7), is biosynthesized from UDP-glucose by galactose 4-epimerase, where UDP = uridylyl diphosphate (a ribonucleotide diphosphate; Section 28.1). The enzyme requires NAD+ for activity (Section 17.7), but it is not a stoichiometric reactant, and NADH is not a final reaction product. Propose a mechanism.

U D P galactose is converted by a N A D cation to U D P-galactose.
Problem 25-31

Mannose, one of the eight essential monosaccharides (Section 25.7), is biosynthesized as its 6-phosphate derivative from fructose 6-phosphate. No enzyme cofactor is required. Propose a mechanism.

Mannose, one of the essential monosaccharides, is biosynthesized as its 6-phosphate derivative from fructose 6-phosphate. No enzyme cofactor is required.
Problem 25-32

Glucosamine, one of the eight essential monosaccharides (Section 25.7), is biosynthesized as its 6-phosphate derivative from fructose 6-phosphate by reaction with ammonia. Propose a mechanism.

Glucosamine, one of the essential monosaccharides, is biosynthesized as its 6-phosphate derivative from fructose 6-phosphate by reaction with ammonia.
Problem 25-33

D-Glucose reacts with acetone in the presence of acid to yield the nonreducing 1,2 : 5,6-diisopropylidene-D-glucofuranose. Propose a mechanism.

The reaction of the Haworth projection of D-glucose with acetone in the presence of hydrochloric acid to yield the non-reducing 1, 2 : 5, 6 diisopropylidene D-glucofuranose.
Problem 25-34

One of the steps in the biological pathway for carbohydrate metabolism is the conversion of fructose 1,6-bisphosphate into dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. Propose a mechanism for the transformation.

The conversion of fructose 1, 6- bisphosphate to glyceraldehyde 3-phosphate and dihydroxyacetone phosphate is a step in the glycolysis pathway for degrading carbohydrates.
Problem 25-35

L-Fucose, one of the eight essential monosaccharides (Section 25.7), is biosynthesized from GDP-D-mannose by the following three-step reaction sequence, where GDP = guanosine diphosphate (a ribonucleoside diphosphate; Section 28.1):

G D P- L-Fucose, one of the essential monosaccharides, is biosynthesized from G D P - D-mannose by a three-step reaction sequence.
(a)
Step 1 involves an oxidation to a ketone, a dehydration to an enone, and a conjugate reduction. The step requires NADP+, but no NADPH is formed as a final reaction product. Propose a mechanism.
(b)
Step 2 accomplishes two epimerizations and utilizes acidic and basic sites in the enzyme but does not require a coenzyme. Propose a mechanism.
(c)
Step 3 requires NADPH as coenzyme. Show the mechanism.

Carbohydrate Structures

Problem 25-36
Classify each of the following sugars. (For example, glucose is an aldohexose.)
(a)
Structure of dihydroxyacetone also known as glycerone. It is a simple triose carbohydrate.
(b)
Structure of a five-carbon atom ketopentose sugar with four -O H groups.
(c)
Structural representation of aldoheptose which is a heptose with an aldehyde group and five chiral centers.
Problem 25-37
Write open-chain structures for the following:
(a)
A ketotetrose
(b)
A ketopentose
(c)
A deoxyaldohexose
(d)
A five-carbon amino sugar
Problem 25-38
What is the stereochemical relationship of D-ribose to L-xylose? What generalizations can you make about the following properties of the two sugars?
(a)
Melting point
(b)
Solubility in water
(c)
Specific rotation
(d)
Density
Problem 25-39

Does ascorbic acid (vitamin C) have a D or L configuration?

The structure of L-ascorbic acid. In the Fisher projection, the farthest chiral carbon has a hydroxyl group on the left hand side.
Problem 25-40
Draw the three-dimensional furanose form of ascorbic acid (Problem 25-39), and assign R or S stereochemistry to each chirality center.
Problem 25-41
Assign R or S configuration to each chirality center in the following molecules:
(a)
Three-carbon Fisher projection,   hydrogen top and bromine on the right and  methyl on the left at C 1 , at C 2  bromine on the left, and methyl  bottom
(b)
Two-carbon Fisher projection,   phenyl top with  OH on the right  and methyl on the left at C 1, at C 2 methyl on the left, and OH at the  bottom
(c)
Three-carbon Fisher projection,   amine top and carboxylic acid  on the right  at C 1, at C 2 OH  on the right, and at C 3 phenyl at the  bottom
Problem 25-42
Draw Fischer projections of the following molecules:
(a)
The S enantiomer of 2-bromobutane
(b)
The R enantiomer of alanine, CH3CH(NH2)CO2H
(c)
The R enantiomer of 2-hydroxypropanoic acid
(d)
The S enantiomer of 3-methylhexane
Problem 25-43
Draw Fischer projections for the two D aldoheptoses whose stereochemistry at C3, C4, C5, and C6 is the same as that of D-glucose at C2, C3, C4, and C5.
Problem 25-44

The following cyclic structure is that of allose. Is this a furanose or pyranose form? Is it an α or a β anomer? Is it a D or an L sugar?

The Haworth projection of beta anomer of pyranose sugar named allose.
Problem 25-45

What is the complete name of the following sugar?

The Haworth projection of a beta pyranose in which two hydroxyl groups are axial at C 3 and C 4  and one equatorial hydroxyl at C 2.
Problem 25-46
Write the following sugars in their open-chain forms:
(a)
The structure of beta-D-altropyranose.
(b)
The structure of alpha-D-fructofuranose.
(c)
The structure of alpha-L-mannopyranose.
Problem 25-47

Draw D-ribulose in its five-membered cyclic β-hemiacetal form.

The Fisher projection of  D-ribulose, ketone  at C 2,  two hydroxyl groups on the right at C 3, and C 4, and a hydroxyl at the bottom of C 4
Problem 25-48
Look up the structure of D-talose in Figure 25.4, and draw the β anomer in its pyranose form. Identify the ring substituents as axial or equatorial.

Carbohydrate Reactions

Problem 25-49
Draw structures for the products you would expect to obtain from reaction of β-D-talopyranose with each of the following reagents:
(a)
NaBH4 in H2O
(b)
Warm dilute HNO3
(c)
Br2, H2O
(d)
CH3CH2OH, HCl
(e)
CH3I, Ag2O
(f)
(CH3CO)2O, pyridine
Problem 25-50
How many D-2-ketohexoses are possible? Draw them.
Problem 25-51
One of the D-2-ketohexoses is called sorbose. On treatment with NaBH4, sorbose yields a mixture of gulitol and iditol. What is the structure of sorbose?
Problem 25-52
Another D-2-ketohexose, psicose, yields a mixture of allitol and altritol when reduced with NaBH4. What is the structure of psicose?
Problem 25-53
L-Gulose can be prepared from D-glucose by a route that begins with oxidation to D-glucaric acid, which cyclizes to form two six-membered-ring lactones. Separating the lactones and reducing them with sodium amalgam gives D-glucose and L-gulose. What are the structures of the two lactones, and which one is reduced to L-gulose?
Problem 25-54
Gentiobiose, a rare disaccharide found in saffron and gentian, is a reducing sugar and forms only D-glucose on hydrolysis with aqueous acid. Reaction of gentiobiose with iodomethane and Ag2O yields an octamethyl derivative, which can be hydrolyzed with aqueous acid to give 1 equivalent of 2,3,4,6-tetra-O-methyl-D-glucopyranose and 1 equivalent of 2,3,4-tri-O-methyl-D-glucopyranose. If gentiobiose contains a β-glycoside link, what is its structure?

General Problems

Problem 25-55
All aldoses exhibit mutarotation. For example, α-D-galactopyranose has [α]D = +150.7, and β-D-galactopyranose has [α]D = +52.8. If either anomer is dissolved in water and allowed to reach equilibrium, the specific rotation of the solution is +80.2. What are the percentages of each anomer at equilibrium? Draw the pyranose forms of both anomers.
Problem 25-56
What other D aldohexose gives the same alditol as D-talose?
Problem 25-57
Which of the eight D aldohexoses give the same aldaric acids as their L enantiomers?
Problem 25-58
Which of the other three D aldopentoses gives the same aldaric acid as D-lyxose?
Problem 25-59
Draw the structure of L-galactose, and then answer the following questions:
(a)
Which other aldohexose gives the same aldaric acid as L-galactose on oxidation with warm HNO3?
(b)
Is this other aldohexose a D sugar or an L sugar?
(c)
Draw this other aldohexose in its most stable pyranose conformation.
Problem 25-60
Amygdalin, or laetrile, is a cyanogenic glycoside first isolated in 1830 from almond and apricot seeds. If acidic hydrolysis of amygdalin liberates HCN, along with benzaldehyde cyanohydrin with gentiobiose (Problem 25-54), what is its structure?
Problem 25-61
Trehalose is a nonreducing disaccharide that is hydrolyzed by aqueous acid to yield 2 equivalents of D-glucose. Methylation followed by hydrolysis yields 2 equivalents of 2,3,4,6-tetra-O-methylglucose. How many structures are possible for trehalose?
Problem 25-62
Trehalose (Problem 25-61) is cleaved by enzymes that hydrolyze α-glycosides but not by enzymes that hydrolyze β-glycosides. What is the structure and systematic name of trehalose?
Problem 25-63
Isotrehalose and neotrehalose are chemically similar to trehalose (Problems 25-61 and 25-62) except that neotrehalose is hydrolyzed only by β-glycosidase enzymes, whereas isotrehalose is hydrolyzed by both α- and β-glycosidase enzymes. What are the structures of isotrehalose and neotrehalose?
Problem 25-64
D-Mannose reacts with acetone to give a diisopropylidene derivative (Problem 25-33) that is still reducing toward Tollens’ reagent. Propose a likely structure for this derivative.
Problem 25-65
Glucose and mannose can be interconverted (in low yield) by treatment with dilute aqueous NaOH. Propose a mechanism.
Problem 25-66
Propose a mechanism to account for the fact that D-gluconic acid and D-mannonic acid are interconverted when either is heated in pyridine solvent.
Problem 25-67
The cyclitols are a group of carbocyclic sugar derivatives having the general formulation 1,2,3,4,5,6-cyclohexanehexol. How many stereoisomeric cyclitols are possible? Draw them in their chair forms.
Problem 25-68
Compound A is a D aldopentose that can be oxidized to an optically inactive aldaric acid B. On Kiliani–Fischer chain extension, A is converted into C and D; C can be oxidized to an optically active aldaric acid E, but D is oxidized to an optically inactive aldaric acid F. What are the structures of AF?
Problem 25-69

Simple sugars undergo reaction with phenylhydrazine, PhNH–NH2, to yield crystalline derivatives called osazones. The reaction is a bit complex, however, as shown by the fact that glucose and fructose yield the same osazone.

D-Glucose and D-fructose when treated with excess phenyl hydrazine form the same osazone  with  phenhydrazones at C 1 and C 2
(a)
Draw the structure of a third sugar that yields the same osazone as glucose and fructose.
(b)
Using glucose as the example, the first step in osazone formation is reaction of the sugar with phenylhydrazine to yield an imine called a phenylhydrazone. Draw the structure of the product.
(c)
The second and third steps in osazone formation are tautomerization of the phenylhydrazone to give an enol, followed by elimination of aniline to give a keto imine. Draw the structures of both the enol tautomer and the keto imine.
(d)
The final step is reaction of the keto imine with 2 equivalents of phenylhydrazine to yield the osazone plus ammonia. Propose a mechanism for this step.
Problem 25-70

When heated to 100 °C, D-idose undergoes a reversible loss of water and exists primarily as 1,6-anhydro-D-idopyranose.

Fischer projection of D-idose, two hydroxyl groups on the left at C2, C3, two hydroxyl groups on the right at C3, C5  in equilibrium with idopyranose and water.
(a)
Draw D-idose in its pyranose form, showing the more stable chair conformation of the ring.
(b)
Which is more stable, α-D-idopyranose or β-D-idopyranose? Explain.
(c)
Draw 1,6-anhydro-D-idopyranose in its most stable conformation.
(d)
When heated to 100 °C under the same conditions as those used for D-idose, D-glucose does not lose water and does not exist in a 1,6-anhydro form. Explain.
Problem 25-71

Acetyl coenzyme A (acetyl CoA) is the key intermediate in food metabolism. What sugar is present in acetyl CoA?

The structure of the acetyl CoA consists of two parts: the acetyl group and CoA. CoA  is a beta mercaptoethylamine, pantothenic acid, phosphate  linked adenosine diphosphate.
Citation/Attribution

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution-NonCommercial-ShareAlike License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/organic-chemistry/pages/1-why-this-chapter
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/organic-chemistry/pages/1-why-this-chapter
Citation information

© Sep 25, 2023 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.