Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Organic Chemistry

18.6 Crown Ethers

Organic Chemistry18.6 Crown Ethers

18.6 • Crown Ethers

Crown ethers, discovered in the early 1960s by Charles Pedersen at the DuPont Company, are a relatively recent addition to the ether family. They are named according to the general format x-crown-y, where x is the total number of atoms in the ring and y is the number of oxygen atoms. Thus, 18-crown-6 ether is an 18-membered ring containing 6 ether oxygen atoms. Note the size and negative (red) character of the crown ether cavity in the following electrostatic potential map.

The crown-shaped structure and ball-and-stick model in the electrostatic potential map of 18-crown-6 ether. It comprises six oxygen atoms with C H 2 C H 2 groups between them.

The importance of crown ethers stems from their ability to sequester specific metal cations in the center of the polyether cavity. 18-Crown-6, for example, binds strongly with potassium ion. As a result, a solution of 18-crown-6 in a nonpolar organic solvent will dissolve many potassium salts. Potassium permanganate, KMnO4, dissolves in toluene in the presence of 18-crown-6, for instance, and the resulting solution is a valuable reagent for oxidizing alkenes.

The effect of using a crown ether to dissolve an inorganic salt in a hydrocarbon or ether solvent is similar to the effect of dissolving the salt in a polar aprotic solvent such as DMSO, DMF, or HMPA (Section 11.3). In both cases, the metal cation is strongly solvated, leaving the anion bare. Thus, the SN2 reactivity of an anion is tremendously enhanced in the presence of a crown ether.

Although crown ethers do not occur naturally, a group of compounds called ionophores have similar ion-binding properties. Produced by various microorganisms, ionophores are fat-soluble molecules that bind to specific ions and facilitate transport of the ions through biological membranes. The antibiotic valinomycin, for instance, binds specifically to K+ ions with a ten-thousandfold selectivity over Na+.

The structure of valinomycin composing a circular arrangement of oxygen atoms, nitrogen monohydride, isopropyl groups, and a carbon chain linked by ester and amide bridges.
Problem 18-15
15-Crown-5 and 12-crown-4 ethers complex Na+ and Li+, respectively. Make models of these crown ethers, and compare the sizes of the cavities.
Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution-NonCommercial-ShareAlike License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/organic-chemistry/pages/1-why-this-chapter
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/organic-chemistry/pages/1-why-this-chapter
Citation information

© Aug 5, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.