Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Microbiology

Introduction

MicrobiologyIntroduction

Orange and brown waterway. Close-up of roots with small nodules on them.
Figure 8.1 Prokaryotes have great metabolic diversity with important consequences to other forms of life. Acidic mine drainage (left) is a serious environmental problem resulting from the introduction of water and oxygen to sulfide-oxidizing bacteria during mining processes. These bacteria produce large amounts of sulfuric acid as a byproduct of their metabolism, resulting in a low-pH environment that can kill many aquatic plants and animals. On the other hand, some prokaryotes are essential to other life forms. Root nodules of many plants (right) house nitrogen-fixing bacteria that convert atmospheric nitrogen into ammonia, providing a usable nitrogen source for these plants. (credit left: modification of work by D. Hardesty, USGS Columbia Environment Research Center; credit right: modification of work by Celmow SR, Clairmont L, Madsen LH, and Guinel FC)

Throughout earth’s history, microbial metabolism has been a driving force behind the development and maintenance of the planet’s biosphere. Eukaryotic organisms such as plants and animals typically depend on organic molecules for energy, growth, and reproduction. Prokaryotes, on the other hand, can metabolize a wide range of organic as well as inorganic matter, from complex organic molecules like cellulose to inorganic molecules and ions such as atmospheric nitrogen (N2), molecular hydrogen (H2), sulfide (S2−), manganese (II) ions (Mn2+), ferrous iron (Fe2+), and ferric iron (Fe3+), to name a few. By metabolizing such substances, microbes chemically convert them to other forms. In some cases, microbial metabolism produces chemicals that can be harmful to other organisms; in others, it produces substances that are essential to the metabolism and survival of other life forms (Figure 8.1).

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/microbiology/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/microbiology/pages/1-introduction
Citation information

© Jan 10, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.