Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Microbiology

23.5 Fungal Infections of the Reproductive System

Microbiology23.5 Fungal Infections of the Reproductive System

Menu
Table of contents
  1. Preface
  2. 1 An Invisible World
    1. Introduction
    2. 1.1 What Our Ancestors Knew
    3. 1.2 A Systematic Approach
    4. 1.3 Types of Microorganisms
    5. Summary
    6. Review Questions
      1. Multiple Choice
      2. Fill in the Blank
      3. Short Answer
      4. Critical Thinking
  3. 2 How We See the Invisible World
    1. Introduction
    2. 2.1 The Properties of Light
    3. 2.2 Peering Into the Invisible World
    4. 2.3 Instruments of Microscopy
    5. 2.4 Staining Microscopic Specimens
    6. Summary
    7. Review Questions
      1. Multiple Choice
      2. Fill in the Blank
      3. Short Answer
      4. Critical Thinking
  4. 3 The Cell
    1. Introduction
    2. 3.1 Spontaneous Generation
    3. 3.2 Foundations of Modern Cell Theory
    4. 3.3 Unique Characteristics of Prokaryotic Cells
    5. 3.4 Unique Characteristics of Eukaryotic Cells
    6. Summary
    7. Review Questions
      1. Multiple Choice
      2. True/False
      3. Fill in the Blank
      4. Short Answer
      5. Critical Thinking
  5. 4 Prokaryotic Diversity
    1. Introduction
    2. 4.1 Prokaryote Habitats, Relationships, and Microbiomes
    3. 4.2 Proteobacteria
    4. 4.3 Nonproteobacteria Gram-Negative Bacteria and Phototrophic Bacteria
    5. 4.4 Gram-Positive Bacteria
    6. 4.5 Deeply Branching Bacteria
    7. 4.6 Archaea
    8. Summary
    9. Review Questions
      1. Multiple Choice
      2. True/False
      3. Fill in the Blank
      4. Short Answer
      5. Critical Thinking
  6. 5 The Eukaryotes of Microbiology
    1. Introduction
    2. 5.1 Unicellular Eukaryotic Parasites
    3. 5.2 Parasitic Helminths
    4. 5.3 Fungi
    5. 5.4 Algae
    6. 5.5 Lichens
    7. Summary
    8. Review Questions
      1. Multiple Choice
      2. Fill in the Blank
      3. Short Answer
      4. Critical Thinking
  7. 6 Acellular Pathogens
    1. Introduction
    2. 6.1 Viruses
    3. 6.2 The Viral Life Cycle
    4. 6.3 Isolation, Culture, and Identification of Viruses
    5. 6.4 Viroids, Virusoids, and Prions
    6. Summary
    7. Review Questions
      1. Multiple Choice
      2. True/False
      3. Fill in the Blank
      4. Short Answer
      5. Critical Thinking
  8. 7 Microbial Biochemistry
    1. Introduction
    2. 7.1 Organic Molecules
    3. 7.2 Carbohydrates
    4. 7.3 Lipids
    5. 7.4 Proteins
    6. 7.5 Using Biochemistry to Identify Microorganisms
    7. Summary
    8. Review Questions
      1. Multiple Choice
      2. True/False
      3. Matching
      4. Fill in the Blank
      5. Short Answer
      6. Critical Thinking
  9. 8 Microbial Metabolism
    1. Introduction
    2. 8.1 Energy, Matter, and Enzymes
    3. 8.2 Catabolism of Carbohydrates
    4. 8.3 Cellular Respiration
    5. 8.4 Fermentation
    6. 8.5 Catabolism of Lipids and Proteins
    7. 8.6 Photosynthesis
    8. 8.7 Biogeochemical Cycles
    9. Summary
    10. Review Questions
      1. Multiple Choice
      2. True/False
      3. Matching
      4. Fill in the Blank
      5. Short Answer
      6. Critical Thinking
  10. 9 Microbial Growth
    1. Introduction
    2. 9.1 How Microbes Grow
    3. 9.2 Oxygen Requirements for Microbial Growth
    4. 9.3 The Effects of pH on Microbial Growth
    5. 9.4 Temperature and Microbial Growth
    6. 9.5 Other Environmental Conditions that Affect Growth
    7. 9.6 Media Used for Bacterial Growth
    8. Summary
    9. Review Questions
      1. Multiple Choice
      2. Matching
      3. Fill in the Blank
      4. Short Answer
      5. Critical Thinking
  11. 10 Biochemistry of the Genome
    1. Introduction
    2. 10.1 Using Microbiology to Discover the Secrets of Life
    3. 10.2 Structure and Function of DNA
    4. 10.3 Structure and Function of RNA
    5. 10.4 Structure and Function of Cellular Genomes
    6. Summary
    7. Review Questions
      1. Multiple Choice
      2. True/False
      3. Matching
      4. Fill in the Blank
      5. Short Answer
      6. Critical Thinking
  12. 11 Mechanisms of Microbial Genetics
    1. Introduction
    2. 11.1 The Functions of Genetic Material
    3. 11.2 DNA Replication
    4. 11.3 RNA Transcription
    5. 11.4 Protein Synthesis (Translation)
    6. 11.5 Mutations
    7. 11.6 How Asexual Prokaryotes Achieve Genetic Diversity
    8. 11.7 Gene Regulation: Operon Theory
    9. Summary
    10. Review Questions
      1. Multiple Choice
      2. True/False
      3. Fill in the Blank
      4. Short Answer
      5. Critical Thinking
  13. 12 Modern Applications of Microbial Genetics
    1. Introduction
    2. 12.1 Microbes and the Tools of Genetic Engineering
    3. 12.2 Visualizing and Characterizing DNA, RNA, and Protein
    4. 12.3 Whole Genome Methods and Pharmaceutical Applications of Genetic Engineering
    5. 12.4 Gene Therapy
    6. Summary
    7. Review Questions
      1. Multiple Choice
      2. True/False
      3. Fill in the Blank
      4. Short Answer
      5. Critical Thinking
  14. 13 Control of Microbial Growth
    1. Introduction
    2. 13.1 Controlling Microbial Growth
    3. 13.2 Using Physical Methods to Control Microorganisms
    4. 13.3 Using Chemicals to Control Microorganisms
    5. 13.4 Testing the Effectiveness of Antiseptics and Disinfectants
    6. Summary
    7. Review Questions
      1. Multiple Choice
      2. True/False
      3. Fill in the Blank
      4. Short Answer
      5. Critical Thinking
  15. 14 Antimicrobial Drugs
    1. Introduction
    2. 14.1 History of Chemotherapy and Antimicrobial Discovery
    3. 14.2 Fundamentals of Antimicrobial Chemotherapy
    4. 14.3 Mechanisms of Antibacterial Drugs
    5. 14.4 Mechanisms of Other Antimicrobial Drugs
    6. 14.5 Drug Resistance
    7. 14.6 Testing the Effectiveness of Antimicrobials
    8. 14.7 Current Strategies for Antimicrobial Discovery
    9. Summary
    10. Review Questions
      1. Multiple Choice
      2. True/False
      3. Fill in the Blank
      4. Short Answer
      5. Critical Thinking
  16. 15 Microbial Mechanisms of Pathogenicity
    1. Introduction
    2. 15.1 Characteristics of Infectious Disease
    3. 15.2 How Pathogens Cause Disease
    4. 15.3 Virulence Factors of Bacterial and Viral Pathogens
    5. 15.4 Virulence Factors of Eukaryotic Pathogens
    6. Summary
    7. Review Questions
      1. Multiple Choice
      2. Fill in the Blank
      3. Short Answer
      4. Critical Thinking
  17. 16 Disease and Epidemiology
    1. Introduction
    2. 16.1 The Language of Epidemiologists
    3. 16.2 Tracking Infectious Diseases
    4. 16.3 Modes of Disease Transmission
    5. 16.4 Global Public Health
    6. Summary
    7. Review Questions
      1. Multiple Choice
      2. Matching
      3. Fill in the Blank
      4. Short Answer
      5. Critical Thinking
  18. 17 Innate Nonspecific Host Defenses
    1. Introduction
    2. 17.1 Physical Defenses
    3. 17.2 Chemical Defenses
    4. 17.3 Cellular Defenses
    5. 17.4 Pathogen Recognition and Phagocytosis
    6. 17.5 Inflammation and Fever
    7. Summary
    8. Review Questions
      1. Multiple Choice
      2. Matching
      3. Fill in the Blank
      4. Short Answer
      5. Critical Thinking
  19. 18 Adaptive Specific Host Defenses
    1. Introduction
    2. 18.1 Overview of Specific Adaptive Immunity
    3. 18.2 Major Histocompatibility Complexes and Antigen-Presenting Cells
    4. 18.3 T Lymphocytes and Cellular Immunity
    5. 18.4 B Lymphocytes and Humoral Immunity
    6. 18.5 Vaccines
    7. Summary
    8. Review Questions
      1. Multiple Choice
      2. Matching
      3. Fill in the Blank
      4. Short Answer
      5. Critical Thinking
  20. 19 Diseases of the Immune System
    1. Introduction
    2. 19.1 Hypersensitivities
    3. 19.2 Autoimmune Disorders
    4. 19.3 Organ Transplantation and Rejection
    5. 19.4 Immunodeficiency
    6. 19.5 Cancer Immunobiology and Immunotherapy
    7. Summary
    8. Review Questions
      1. Multiple Choice
      2. Matching
      3. Fill in the Blank
      4. Short Answer
      5. Critical Thinking
  21. 20 Laboratory Analysis of the Immune Response
    1. Introduction
    2. 20.1 Polyclonal and Monoclonal Antibody Production
    3. 20.2 Detecting Antigen-Antibody Complexes
    4. 20.3 Agglutination Assays
    5. 20.4 EIAs and ELISAs
    6. 20.5 Fluorescent Antibody Techniques
    7. Summary
    8. Review Questions
      1. Multiple Choice
      2. Fill in the Blank
      3. Short Answer
      4. Critical Thinking
  22. 21 Skin and Eye Infections
    1. Introduction
    2. 21.1 Anatomy and Normal Microbiota of the Skin and Eyes
    3. 21.2 Bacterial Infections of the Skin and Eyes
    4. 21.3 Viral Infections of the Skin and Eyes
    5. 21.4 Mycoses of the Skin
    6. 21.5 Protozoan and Helminthic Infections of the Skin and Eyes
    7. Summary
    8. Review Questions
      1. Multiple Choice
      2. Fill in the Blank
      3. Short Answer
      4. Critical Thinking
  23. 22 Respiratory System Infections
    1. Introduction
    2. 22.1 Anatomy and Normal Microbiota of the Respiratory Tract
    3. 22.2 Bacterial Infections of the Respiratory Tract
    4. 22.3 Viral Infections of the Respiratory Tract
    5. 22.4 Respiratory Mycoses
    6. Summary
    7. Review Questions
      1. Multiple Choice
      2. Fill in the Blank
      3. Short Answer
      4. Critical Thinking
  24. 23 Urogenital System Infections
    1. Introduction
    2. 23.1 Anatomy and Normal Microbiota of the Urogenital Tract
    3. 23.2 Bacterial Infections of the Urinary System
    4. 23.3 Bacterial Infections of the Reproductive System
    5. 23.4 Viral Infections of the Reproductive System
    6. 23.5 Fungal Infections of the Reproductive System
    7. 23.6 Protozoan Infections of the Urogenital System
    8. Summary
    9. Review Questions
      1. Multiple Choice
      2. Fill in the Blank
      3. Short Answer
      4. Critical Thinking
  25. 24 Digestive System Infections
    1. Introduction
    2. 24.1 Anatomy and Normal Microbiota of the Digestive System
    3. 24.2 Microbial Diseases of the Mouth and Oral Cavity
    4. 24.3 Bacterial Infections of the Gastrointestinal Tract
    5. 24.4 Viral Infections of the Gastrointestinal Tract
    6. 24.5 Protozoan Infections of the Gastrointestinal Tract
    7. 24.6 Helminthic Infections of the Gastrointestinal Tract
    8. Summary
    9. Review Questions
      1. Multiple Choice
      2. Fill in the Blank
      3. Short Answer
      4. Critical Thinking
  26. 25 Circulatory and Lymphatic System Infections
    1. Introduction
    2. 25.1 Anatomy of the Circulatory and Lymphatic Systems
    3. 25.2 Bacterial Infections of the Circulatory and Lymphatic Systems
    4. 25.3 Viral Infections of the Circulatory and Lymphatic Systems
    5. 25.4 Parasitic Infections of the Circulatory and Lymphatic Systems
    6. Summary
    7. Review Questions
      1. Multiple Choice
      2. Fill in the Blank
      3. Short Answer
      4. Critical Thinking
  27. 26 Nervous System Infections
    1. Introduction
    2. 26.1 Anatomy of the Nervous System
    3. 26.2 Bacterial Diseases of the Nervous System
    4. 26.3 Acellular Diseases of the Nervous System
    5. 26.4 Fungal and Parasitic Diseases of the Nervous System
    6. Summary
    7. Review Questions
      1. Multiple Choice
      2. Matching
      3. Fill in the Blank
      4. Short Answer
      5. Critical Thinking
  28. A | Fundamentals of Physics and Chemistry Important to Microbiology
  29. B | Mathematical Basics
  30. C | Metabolic Pathways
  31. D | Taxonomy of Clinically Relevant Microorganisms
  32. E | Glossary
  33. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
    11. Chapter 11
    12. Chapter 12
    13. Chapter 13
    14. Chapter 14
    15. Chapter 15
    16. Chapter 16
    17. Chapter 17
    18. Chapter 18
    19. Chapter 19
    20. Chapter 20
    21. Chapter 21
    22. Chapter 22
    23. Chapter 23
    24. Chapter 24
    25. Chapter 25
    26. Chapter 26
  34. Index

Learning Objectives

By the end of this section, you will be able to:

  • Summarize the important characteristics of vaginal candidiasis

Only one major fungal pathogen affects the urogenital system. Candida is a genus of fungi capable of existing in a yeast form or as a multicellular fungus. Candida spp. are commonly found in the normal, healthy microbiota of the skin, gastrointestinal tract, respiratory system, and female urogenital tract (Figure 23.21). They can be pathogenic due to their ability to adhere to and invade host cells, form biofilms, secrete hydrolases (e.g., proteases, phospholipases, and lipases) that assist in their spread through tissues, and change their phenotypes to protect themselves from the immune system. However, they typically only cause disease in the female reproductive tract under conditions that compromise the host’s defenses. While there are at least 20 Candida species of clinical importance, C. albicans is the species most commonly responsible for fungal vaginitis.

As discussed earlier, lactobacilli in the vagina inhibit the growth of other organisms, including bacteria and Candida, but disruptions can allow Candida to increase in numbers. Typical disruptions include antibiotic therapy, illness (especially diabetes), pregnancy, and the presence of transient microbes. Immunosuppression can also play a role, and the severe immunosuppression associated with HIV infection often allows Candida to thrive. This can cause genital or vaginal candidiasis, a condition characterized by vaginitis and commonly known as a yeast infection. When a yeast infection develops, inflammation occurs along with symptoms of pruritus (itching), a thick white or yellow discharge, and odor.

Other forms of candidiasis include cutaneous candidiasis (see Mycoses of the Skin) and oral thrush (see Microbial Diseases of the Mouth and Oral Cavity). Although Candida spp. are found in the normal microbiota, Candida spp. may also be transmitted between individuals. Sexual contact is a common mode of transmission, although candidiasis is not considered an STI.

Diagnosis of vaginal candidiasis can be made using microscopic evaluation of vaginal secretions to determine whether there is an excess of Candida. Culturing approaches are less useful because Candida is part of the normal microbiota and will regularly appear. It is also easy to contaminate samples with Candida because it is so common, so care must be taken to handle clinical material appropriately. Samples can be refrigerated if there is a delay in handling. Candida is a dimorphic fungus, so it does not only exist in a yeast form; cultivation can be used to identify chlamydospores and pseudohyphae, which develop from germ tubes (Figure 23.22). The presence of the germ tube can be used in a diagnostic test in which cultured yeast cells are combined with rabbit serum and observed after a few hours for the presence of germ tubes. Molecular tests are also available if needed. The Affirm VPII Microbial Identification Test, for instance, tests simultaneously for the vaginal microbes C. albicans, G. vaginalis (see Bacterial Infections of the Urinary System), and Trichomonas vaginalis (see Protozoan Infections of the Urogenital System).

Topical antifungal medications for vaginal candidiasis include butoconazole, miconazole, clotrimazole, tioconazole, and nystatin. Oral treatment with fluconazole can be used. There are often no clear precipitating factors for infection, so prevention is difficult.

a) micrograph showing long strands with dark blue spheres labeled chlamydospores on the tips of the strands. Smaller clear spheres in clusters on the strand are labeled blastospores.
Figure 23.21 Candida blastospores (asexual spores that result from budding) and chlamydospores (resting spores produced through asexual reproduction) are visible in this micrograph. (credit: modification of work by Centers for Disease Control and Prevention)
Micrograph of two circular cells attached to each other; one is labeled daughter cell and the other is labeled mother cell. The mother cell has a small protrusion labeled germ tube (6 minutes old).
Figure 23.22 Candida can produce germ tubes, like the one in this micrograph, that develop into hyphae. (credit: modification of work by American Society for Microbiology)

Check Your Understanding

  • What factors can lead to candidiasis?
  • How is candidiasis typically diagnosed?

Clinical Focus

Part 3

The Gram stain of Nadia’s vaginal smear showed that the concentration of lactobacilli relative to other species in Nadia’s vaginal sample was abnormally low. However, there were no clue cells visible, which suggests that the infection is not bacterial vaginosis. But a wet-mount slide showed an overgrowth of yeast cells, suggesting that the problem is candidiasis, or a yeast infection (Figure 23.23). This, Nadia’s doctor assures her, is good news. Candidiasis is common during pregnancy and easily treatable.

  • Knowing that the problem is candidiasis, what treatments might the doctor suggest?
a) micrograph of large pink cell with a nucleus and smaller pink rod shaped cells. B) Micrograph of long tubes labeled pseudohyphae.
Figure 23.23 (a) Lactobacilli are visible as gram-positive rods on and around this squamous epithelial cell. (b) This wet mount prepared with KOH shows Candida albicans pseudohyphae and squamous epithelial cells in a vaginal sample from a patient with candidiasis. (credit a: modification of work by Centers for Disease Control and Prevention; credit b: modification of work by Mikael Häggström)

Jump to the next Clinical Focus box. Go back to the previous Clinical Focus box.

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/microbiology/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/microbiology/pages/1-introduction
Citation information

© Dec 20, 2022 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.