Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Microbiology

Introduction

MicrobiologyIntroduction

A photo of the inside of a car with a table identifying the average CFUs per 6.5 x 6.5 cm area.  Door latch – 256. Door lock – 14. Door lock control – 182. Door handle – 29. Window control – 4. Cruise control button – 69. Steering wheel – 239. Interior steering wheel – 390. Radio volume know – 99. Gear shifter – 115. Center console – 506.
Figure 13.1 Most environments, including cars, are not sterile. A study1 analyzed 11 locations within 18 different cars to determine the number of microbial colony-forming units (CFUs) present. The center console harbored by far the most microbes (506 CFUs), possibly because that is where drinks are placed (and often spilled). Frequently touched sites also had high concentrations. (credit “photo”: modification of work by Jeff Wilcox)

How clean is clean? People wash their cars and vacuum the carpets, but most would not want to eat from these surfaces. Similarly, we might eat with silverware cleaned in a dishwasher, but we could not use the same dishwasher to clean surgical instruments. As these examples illustrate, “clean” is a relative term. Car washing, vacuuming, and dishwashing all reduce the microbial load on the items treated, thus making them “cleaner.” But whether they are “clean enough” depends on their intended use. Because people do not normally eat from cars or carpets, these items do not require the same level of cleanliness that silverware does. Likewise, because silverware is not used for invasive surgery, these utensils do not require the same level of cleanliness as surgical equipment, which requires sterilization to prevent infection.

Why not play it safe and sterilize everything? Sterilizing everything we come in contact with is impractical, as well as potentially dangerous. As this chapter will demonstrate, sterilization protocols often require time- and labor-intensive treatments that may degrade the quality of the item being treated or have toxic effects on users. Therefore, the user must consider the item’s intended application when choosing a cleaning method to ensure that it is “clean enough.”

Footnotes

  • 1R.E. Stephenson et al. “Elucidation of Bacteria Found in Car Interiors and Strategies to Reduce the Presence of Potential Pathogens.” Biofouling 30 no. 3 (2014):337–346.
Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/microbiology/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/microbiology/pages/1-introduction
Citation information

© Jan 10, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.