Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Microbiology

Introduction

MicrobiologyIntroduction

A photograph of a thermocycler; a desktop machine with a heating element and temperature display. A micrograph of oval cells; most are clear but a few are orange.
Figure 12.1 A thermal cycler (left) is used during a polymerase chain reaction (PCR). PCR amplifies the number of copies of DNA and can assist in diagnosis of infections caused by microbes that are difficult to culture, such as Chlamydia trachomatis (right). C. trachomatis causes chlamydia, the most common sexually transmitted disease in the United States, and trachoma, the world’s leading cause of preventable blindness. (credit right: modification of work by Centers for Disease Control and Prevention)

Watson and Crick’s identification of the structure of DNA in 1953 was the seminal event in the field of genetic engineering. Since the 1970s, there has been a veritable explosion in scientists’ ability to manipulate DNA in ways that have revolutionized the fields of biology, medicine, diagnostics, forensics, and industrial manufacturing. Many of the molecular tools discovered in recent decades have been produced using prokaryotic microbes. In this chapter, we will explore some of those tools, especially as they relate to applications in medicine and health care.

As an example, the thermal cycler in Figure 12.1 is used to perform a diagnostic technique called the polymerase chain reaction (PCR), which relies on DNA polymerase enzymes from thermophilic bacteria. Other molecular tools, such as restriction enzymes and plasmids obtained from microorganisms, allow scientists to insert genes from humans or other organisms into microorganisms. The microorganisms are then grown on an industrial scale to synthesize products such as insulin, vaccines, and biodegradable polymers. These are just a few of the numerous applications of microbial genetics that we will explore in this chapter.

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/microbiology/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/microbiology/pages/1-introduction
Citation information

© Jan 10, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.