Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo

Table of contents
  1. Preface
  2. 1 Sampling and Data
    1. Introduction
    2. 1.1 Definitions of Statistics, Probability, and Key Terms
    3. 1.2 Data, Sampling, and Variation in Data and Sampling
    4. 1.3 Frequency, Frequency Tables, and Levels of Measurement
    5. 1.4 Experimental Design and Ethics
    6. 1.5 Data Collection Experiment
    7. 1.6 Sampling Experiment
    8. Key Terms
    9. Chapter Review
    10. Practice
    11. Homework
    12. Bringing It Together: Homework
    13. References
    14. Solutions
  3. 2 Descriptive Statistics
    1. Introduction
    2. 2.1 Stem-and-Leaf Graphs (Stemplots), Line Graphs, and Bar Graphs
    3. 2.2 Histograms, Frequency Polygons, and Time Series Graphs
    4. 2.3 Measures of the Location of the Data
    5. 2.4 Box Plots
    6. 2.5 Measures of the Center of the Data
    7. 2.6 Skewness and the Mean, Median, and Mode
    8. 2.7 Measures of the Spread of the Data
    9. 2.8 Descriptive Statistics
    10. Key Terms
    11. Chapter Review
    12. Formula Review
    13. Practice
    14. Homework
    15. Bringing It Together: Homework
    16. References
    17. Solutions
  4. 3 Probability Topics
    1. Introduction
    2. 3.1 Terminology
    3. 3.2 Independent and Mutually Exclusive Events
    4. 3.3 Two Basic Rules of Probability
    5. 3.4 Contingency Tables
    6. 3.5 Tree and Venn Diagrams
    7. 3.6 Probability Topics
    8. Key Terms
    9. Chapter Review
    10. Formula Review
    11. Practice
    12. Bringing It Together: Practice
    13. Homework
    14. Bringing It Together: Homework
    15. References
    16. Solutions
  5. 4 Discrete Random Variables
    1. Introduction
    2. 4.1 Probability Distribution Function (PDF) for a Discrete Random Variable
    3. 4.2 Mean or Expected Value and Standard Deviation
    4. 4.3 Binomial Distribution
    5. 4.4 Geometric Distribution
    6. 4.5 Hypergeometric Distribution
    7. 4.6 Poisson Distribution
    8. 4.7 Discrete Distribution (Playing Card Experiment)
    9. 4.8 Discrete Distribution (Lucky Dice Experiment)
    10. Key Terms
    11. Chapter Review
    12. Formula Review
    13. Practice
    14. Homework
    15. References
    16. Solutions
  6. 5 Continuous Random Variables
    1. Introduction
    2. 5.1 Continuous Probability Functions
    3. 5.2 The Uniform Distribution
    4. 5.3 The Exponential Distribution
    5. 5.4 Continuous Distribution
    6. Key Terms
    7. Chapter Review
    8. Formula Review
    9. Practice
    10. Homework
    11. References
    12. Solutions
  7. 6 The Normal Distribution
    1. Introduction
    2. 6.1 The Standard Normal Distribution
    3. 6.2 Using the Normal Distribution
    4. 6.3 Normal Distribution (Lap Times)
    5. 6.4 Normal Distribution (Pinkie Length)
    6. Key Terms
    7. Chapter Review
    8. Formula Review
    9. Practice
    10. Homework
    11. References
    12. Solutions
  8. 7 The Central Limit Theorem
    1. Introduction
    2. 7.1 The Central Limit Theorem for Sample Means (Averages)
    3. 7.2 The Central Limit Theorem for Sums
    4. 7.3 Using the Central Limit Theorem
    5. 7.4 Central Limit Theorem (Pocket Change)
    6. 7.5 Central Limit Theorem (Cookie Recipes)
    7. Key Terms
    8. Chapter Review
    9. Formula Review
    10. Practice
    11. Homework
    12. References
    13. Solutions
  9. 8 Confidence Intervals
    1. Introduction
    2. 8.1 A Single Population Mean using the Normal Distribution
    3. 8.2 A Single Population Mean using the Student t Distribution
    4. 8.3 A Population Proportion
    5. 8.4 Confidence Interval (Home Costs)
    6. 8.5 Confidence Interval (Place of Birth)
    7. 8.6 Confidence Interval (Women's Heights)
    8. Key Terms
    9. Chapter Review
    10. Formula Review
    11. Practice
    12. Homework
    13. References
    14. Solutions
  10. 9 Hypothesis Testing with One Sample
    1. Introduction
    2. 9.1 Null and Alternative Hypotheses
    3. 9.2 Outcomes and the Type I and Type II Errors
    4. 9.3 Distribution Needed for Hypothesis Testing
    5. 9.4 Rare Events, the Sample, Decision and Conclusion
    6. 9.5 Additional Information and Full Hypothesis Test Examples
    7. 9.6 Hypothesis Testing of a Single Mean and Single Proportion
    8. Key Terms
    9. Chapter Review
    10. Formula Review
    11. Practice
    12. Homework
    13. References
    14. Solutions
  11. 10 Hypothesis Testing with Two Samples
    1. Introduction
    2. 10.1 Two Population Means with Unknown Standard Deviations
    3. 10.2 Two Population Means with Known Standard Deviations
    4. 10.3 Comparing Two Independent Population Proportions
    5. 10.4 Matched or Paired Samples
    6. 10.5 Hypothesis Testing for Two Means and Two Proportions
    7. Key Terms
    8. Chapter Review
    9. Formula Review
    10. Practice
    11. Homework
    12. Bringing It Together: Homework
    13. References
    14. Solutions
  12. 11 The Chi-Square Distribution
    1. Introduction
    2. 11.1 Facts About the Chi-Square Distribution
    3. 11.2 Goodness-of-Fit Test
    4. 11.3 Test of Independence
    5. 11.4 Test for Homogeneity
    6. 11.5 Comparison of the Chi-Square Tests
    7. 11.6 Test of a Single Variance
    8. 11.7 Lab 1: Chi-Square Goodness-of-Fit
    9. 11.8 Lab 2: Chi-Square Test of Independence
    10. Key Terms
    11. Chapter Review
    12. Formula Review
    13. Practice
    14. Homework
    15. Bringing It Together: Homework
    16. References
    17. Solutions
  13. 12 Linear Regression and Correlation
    1. Introduction
    2. 12.1 Linear Equations
    3. 12.2 Scatter Plots
    4. 12.3 The Regression Equation
    5. 12.4 Testing the Significance of the Correlation Coefficient
    6. 12.5 Prediction
    7. 12.6 Outliers
    8. 12.7 Regression (Distance from School)
    9. 12.8 Regression (Textbook Cost)
    10. 12.9 Regression (Fuel Efficiency)
    11. Key Terms
    12. Chapter Review
    13. Formula Review
    14. Practice
    15. Homework
    16. Bringing It Together: Homework
    17. References
    18. Solutions
  14. 13 F Distribution and One-Way ANOVA
    1. Introduction
    2. 13.1 One-Way ANOVA
    3. 13.2 The F Distribution and the F-Ratio
    4. 13.3 Facts About the F Distribution
    5. 13.4 Test of Two Variances
    6. 13.5 Lab: One-Way ANOVA
    7. Key Terms
    8. Chapter Review
    9. Formula Review
    10. Practice
    11. Homework
    12. References
    13. Solutions
  15. A | Review Exercises (Ch 3-13)
  16. B | Practice Tests (1-4) and Final Exams
  17. C | Data Sets
  18. D | Group and Partner Projects
  19. E | Solution Sheets
  20. F | Mathematical Phrases, Symbols, and Formulas
  21. G | Notes for the TI-83, 83+, 84, 84+ Calculators
  22. H | Tables
  23. Index

12.1 Linear Equations

57.

For each of the following situations, state the independent variable and the dependent variable.

  1. A study is done to determine if elderly drivers are involved in more motor vehicle fatalities than other drivers. The number of fatalities per 100,000 drivers is compared to the age of drivers.
  2. A study is done to determine if the weekly grocery bill changes based on the number of family members.
  3. Insurance companies base life insurance premiums partially on the age of the applicant.
  4. Utility bills vary according to power consumption.
  5. A study is done to determine if a higher education reduces the crime rate in a population.
58.

Piece-rate systems are widely debated incentive payment plans. In a recent study of loan officer effectiveness, the following piece-rate system was examined:

% of goal reached < 80 80 100 120
Incentive n/a $4,000 with an additional $125 added per percentage point from 81–99% $6,500 with an additional $125 added per percentage point from 101–119% $9,500 with an additional $125 added per percentage point starting at 121%
Table 12.15

If a loan officer makes 95% of his or her goal, write the linear function that applies based on the incentive plan table. In context, explain the y-intercept and slope.

12.2 Scatter Plots

59.

The Gross Domestic Product Purchasing Power Parity is an indication of a country’s currency value compared to another country. Table 12.16 shows the GDP PPP of Cuba as compared to US dollars. Construct a scatter plot of the data.

Year Cuba’s PPP Year Cuba’s PPP
1999 1,700 2006 4,000
2000 1,700 2007 11,000
2002 2,300 2008 9,500
2003 2,900 2009 9,700
2004 3,000 2010 9,900
2005 3,500
Table 12.16
60.

The following table shows the poverty rates and cell phone usage in the United States. Construct a scatter plot of the data

Year Poverty Rate Cellular Usage per Capita
2003 12.7 54.67
2005 12.6 74.19
2007 12 84.86
2009 12 90.82
Table 12.17
61.

Does the higher cost of tuition translate into higher-paying jobs? The table lists the top ten colleges based on mid-career salary and the associated yearly tuition costs. Construct a scatter plot of the data.

School Mid-Career Salary (in thousands) Yearly Tuition
Princeton 137 28,540
Harvey Mudd 135 40,133
CalTech 127 39,900
US Naval Academy 122 0
West Point 120 0
MIT 118 42,050
Lehigh University 118 43,220
NYU-Poly 117 39,565
Babson College 117 40,400
Stanford 114 54,506
Table 12.18
62.

If the level of significance is 0.05 and the p-value is 0.06, what conclusion can you draw?

63.

If there are 15 data points in a set of data, what is the number of degree of freedom?

12.3 The Regression Equation

64.

What is the process through which we can calculate a line that goes through a scatter plot with a linear pattern?

65.

Explain what it means when a correlation has an r2 of 0.72.

66.

Can a coefficient of determination be negative? Why or why not?

12.5 Prediction

67.

Recently, the annual number of driver deaths per 100,000 for the selected age groups was as follows:

Age Number of Driver Deaths per 100,000
16–19 38
20–24 36
25–34 24
35–54 20
55–74 18
75+ 28
Table 12.19
  1. For each age group, pick the midpoint of the interval for the x value. (For the 75+ group, use 80.)
  2. Using “ages” as the independent variable and “Number of driver deaths per 100,000” as the dependent variable, make a scatter plot of the data.
  3. Calculate the least squares (best–fit) line. Put the equation in the form of: ŷ = a + bx
  4. Find the correlation coefficient. Is it significant?
  5. Predict the number of deaths for ages 40 and 60.
  6. Based on the given data, is there a linear relationship between age of a driver and driver fatality rate?
  7. What is the slope of the least squares (best-fit) line? Interpret the slope.
68.

Table 12.20 shows the life expectancy for an individual born in the United States in certain years.

Year of Birth Life Expectancy
1930 59.7
1940 62.9
1950 70.2
1965 69.7
1973 71.4
1982 74.5
1987 75
1992 75.7
2010 78.7
Table 12.20
  1. Decide which variable should be the independent variable and which should be the dependent variable.
  2. Draw a scatter plot of the ordered pairs.
  3. Calculate the least squares line. Put the equation in the form of: ŷ = a + bx
  4. Find the correlation coefficient. Is it significant?
  5. Find the estimated life expectancy for an individual born in 1950 and for one born in 1982.
  6. Why aren’t the answers to part e the same as the values in Table 12.20 that correspond to those years?
  7. Use the two points in part e to plot the least squares line on your graph from part b.
  8. Based on the data, is there a linear relationship between the year of birth and life expectancy?
  9. Are there any outliers in the data?
  10. Using the least squares line, find the estimated life expectancy for an individual born in 1850. Does the least squares line give an accurate estimate for that year? Explain why or why not.
  11. What is the slope of the least-squares (best-fit) line? Interpret the slope.
69.

The maximum discount value of the Entertainment® card for the “Fine Dining” section, Edition ten, for various pages is given in Table 12.21

Page number Maximum value ($)
4 16
14 19
25 15
32 17
43 19
57 15
72 16
85 15
90 17
Table 12.21
  1. Decide which variable should be the independent variable and which should be the dependent variable.
  2. Draw a scatter plot of the ordered pairs.
  3. Calculate the least-squares line. Put the equation in the form of: ŷ = a + bx
  4. Find the correlation coefficient. Is it significant?
  5. Find the estimated maximum values for the restaurants on page ten and on page 70.
  6. Does it appear that the restaurants giving the maximum value are placed in the beginning of the “Fine Dining” section? How did you arrive at your answer?
  7. Suppose that there were 200 pages of restaurants. What do you estimate to be the maximum value for a restaurant listed on page 200?
  8. Is the least squares line valid for page 200? Why or why not?
  9. What is the slope of the least-squares (best-fit) line? Interpret the slope.
70.

Table 12.22 gives the gold medal times for every other Summer Olympics for the women’s 100-meter freestyle (swimming).

Year Time (seconds)
1912 82.2
1924 72.4
1932 66.8
1952 66.8
1960 61.2
1968 60.0
1976 55.65
1984 55.92
1992 54.64
2000 53.8
2008 53.1
Table 12.22
  1. Decide which variable should be the independent variable and which should be the dependent variable.
  2. Draw a scatter plot of the data.
  3. Does it appear from inspection that there is a relationship between the variables? Why or why not?
  4. Calculate the least squares line. Put the equation in the form of: ŷ = a + bx.
  5. Find the correlation coefficient. Is the decrease in times significant?
  6. Find the estimated gold medal time for 1932. Find the estimated time for 1984.
  7. Why are the answers from part f different from the chart values?
  8. Does it appear that a line is the best way to fit the data? Why or why not?
  9. Use the least-squares line to estimate the gold medal time for the next Summer Olympics. Do you think that your answer is reasonable? Why or why not?
71.
State # letters in name Year entered the Union Rank for entering the Union Area (square miles)
Alabama 7 1819 22 52,423
Colorado 8 1876 38 104,100
Hawaii 6 1959 50 10,932
Iowa 4 1846 29 56,276
Maryland 8 1788 7 12,407
Missouri 8 1821 24 69,709
New Jersey 9 1787 3 8,722
Ohio 4 1803 17 44,828
South Carolina 13 1788 8 32,008
Utah 4 1896 45 84,904
Wisconsin 9 1848 30 65,499
Table 12.23

We are interested in whether or not the number of letters in a state name depends upon the year the state entered the Union.

  1. Decide which variable should be the independent variable and which should be the dependent variable.
  2. Draw a scatter plot of the data.
  3. Does it appear from inspection that there is a relationship between the variables? Why or why not?
  4. Calculate the least-squares line. Put the equation in the form of: ŷ = a + bx.
  5. Find the correlation coefficient. What does it imply about the significance of the relationship?
  6. Find the estimated number of letters (to the nearest integer) a state would have if it entered the Union in 1900. Find the estimated number of letters a state would have if it entered the Union in 1940.
  7. Does it appear that a line is the best way to fit the data? Why or why not?
  8. Use the least-squares line to estimate the number of letters a new state that enters the Union this year would have. Can the least squares line be used to predict it? Why or why not?

12.6 Outliers

72.

The height (sidewalk to roof) of notable tall buildings in America is compared to the number of stories of the building (beginning at street level).

Height (in feet) Stories
1,050 57
428 28
362 26
529 40
790 60
401 22
380 38
1,454 110
1,127 100
700 46
Table 12.24
  1. Using “stories” as the independent variable and “height” as the dependent variable, make a scatter plot of the data.
  2. Does it appear from inspection that there is a relationship between the variables?
  3. Calculate the least squares line. Put the equation in the form of: ŷ = a + bx
  4. Find the correlation coefficient. Is it significant?
  5. Find the estimated heights for 32 stories and for 94 stories.
  6. Based on the data in Table 12.24, is there a linear relationship between the number of stories in tall buildings and the height of the buildings?
  7. Are there any outliers in the data? If so, which point(s)?
  8. What is the estimated height of a building with six stories? Does the least squares line give an accurate estimate of height? Explain why or why not.
  9. Based on the least squares line, adding an extra story is predicted to add about how many feet to a building?
  10. What is the slope of the least squares (best-fit) line? Interpret the slope.
73.

Ornithologists, scientists who study birds, tag sparrow hawks in 13 different colonies to study their population. They gather data for the percent of new sparrow hawks in each colony and the percent of those that have returned from migration.

Percent return:74; 66; 81; 52; 73; 62; 52; 45; 62; 46; 60; 46; 38
Percent new:5; 6; 8; 11; 12; 15; 16; 17; 18; 18; 19; 20; 20

  1. Enter the data into your calculator and make a scatter plot.
  2. Use your calculator’s regression function to find the equation of the least-squares regression line. Add this to your scatter plot from part a.
  3. Explain in words what the slope and y-intercept of the regression line tell us.
  4. How well does the regression line fit the data? Explain your response.
  5. Which point has the largest residual? Explain what the residual means in context. Is this point an outlier? An influential point? Explain.
  6. An ecologist wants to predict how many birds will join another colony of sparrow hawks to which 70% of the adults from the previous year have returned. What is the prediction?
74.

The following table shows data on average per capita coffee consumption and heart disease rate in a random sample of 10 countries.

Yearly coffee consumption in liters 2.5 3.9 2.9 2.4 2.9 0.8 9.1 2.7 0.8 0.7
Death from heart diseases 221 167 131 191 220 297 71 172 211 300
Table 12.25
  1. Enter the data into your calculator and make a scatter plot.
  2. Use your calculator’s regression function to find the equation of the least-squares regression line. Add this to your scatter plot from part a.
  3. Explain in words what the slope and y-intercept of the regression line tell us.
  4. How well does the regression line fit the data? Explain your response.
  5. Which point has the largest residual? Explain what the residual means in context. Is this point an outlier? An influential point? Explain.
  6. Do the data provide convincing evidence that there is a linear relationship between the amount of coffee consumed and the heart disease death rate? Carry out an appropriate test at a significance level of 0.05 to help answer this question.
75.

The following table consists of one student athlete’s time (in minutes) to swim 2000 yards and the student’s heart rate (beats per minute) after swimming on a random sample of 10 days:

Swim Time Heart Rate
34.12 144
35.72 152
34.72 124
34.05 140
34.13 152
35.73 146
36.17 128
35.57 136
35.37 144
35.57 148
Table 12.26
  1. Enter the data into your calculator and make a scatter plot.
  2. Use your calculator’s regression function to find the equation of the least-squares regression line. Add this to your scatter plot from part a.
  3. Explain in words what the slope and y-intercept of the regression line tell us.
  4. How well does the regression line fit the data? Explain your response.
  5. Which point has the largest residual? Explain what the residual means in context. Is this point an outlier? An influential point? Explain.
76.

A researcher is investigating whether population impacts homicide rate. He uses demographic data from Detroit, MI to compare homicide rates and the number of the population that are White males.

Population Size Homicide rate per 100,000 people
558,724 8.6
538,584 8.9
519,171 8.52
500,457 8.89
482,418 13.07
465,029 14.57
448,267 21.36
432,109 28.03
416,533 31.49
401,518 37.39
387,046 46.26
373,095 47.24
359,647 52.33
Table 12.27
  1. Use your calculator to construct a scatter plot of the data. What should the independent variable be? Why?
  2. Use your calculator’s regression function to find the equation of the least-squares regression line. Add this to your scatter plot.
  3. Discuss what the following mean in context.
    1. The slope of the regression equation
    2. The y-intercept of the regression equation
    3. The correlation r
    4. The coefficient of determination r2.
  4. Do the data provide convincing evidence that there is a linear relationship between population size and homicide rate? Carry out an appropriate test at a significance level of 0.05 to help answer this question.
77.
School Mid-Career Salary (in thousands) Yearly Tuition
Princeton 137 28,540
Harvey Mudd 135 40,133
CalTech 127 39,900
US Naval Academy 122 0
West Point 120 0
MIT 118 42,050
Lehigh University 118 43,220
NYU-Poly 117 39,565
Babson College 117 40,400
Stanford 114 54,506
Table 12.28

Using the data to determine the linear-regression line equation with the outliers removed. Is there a linear correlation for the data set with outliers removed? Justify your answer.

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/introductory-statistics/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/introductory-statistics/pages/1-introduction
Citation information

© Jun 23, 2022 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.