Skip to Content
OpenStax Logo
Buy book
  1. Preface
  2. 1 Sampling and Data
    1. Introduction
    2. 1.1 Definitions of Statistics, Probability, and Key Terms
    3. 1.2 Data, Sampling, and Variation in Data and Sampling
    4. 1.3 Levels of Measurement
    5. 1.4 Experimental Design and Ethics
    6. Key Terms
    7. Chapter Review
    8. Homework
    9. References
    10. Solutions
  3. 2 Descriptive Statistics
    1. Introduction
    2. 2.1 Display Data
    3. 2.2 Measures of the Location of the Data
    4. 2.3 Measures of the Center of the Data
    5. 2.4 Sigma Notation and Calculating the Arithmetic Mean
    6. 2.5 Geometric Mean
    7. 2.6 Skewness and the Mean, Median, and Mode
    8. 2.7 Measures of the Spread of the Data
    9. Key Terms
    10. Chapter Review
    11. Formula Review
    12. Practice
    13. Homework
    14. Bringing It Together: Homework
    15. References
    16. Solutions
  4. 3 Probability Topics
    1. Introduction
    2. 3.1 Terminology
    3. 3.2 Independent and Mutually Exclusive Events
    4. 3.3 Two Basic Rules of Probability
    5. 3.4 Contingency Tables and Probability Trees
    6. 3.5 Venn Diagrams
    7. Key Terms
    8. Chapter Review
    9. Formula Review
    10. Practice
    11. Bringing It Together: Practice
    12. Homework
    13. Bringing It Together: Homework
    14. References
    15. Solutions
  5. 4 Discrete Random Variables
    1. Introduction
    2. 4.1 Hypergeometric Distribution
    3. 4.2 Binomial Distribution
    4. 4.3 Geometric Distribution
    5. 4.4 Poisson Distribution
    6. Key Terms
    7. Chapter Review
    8. Formula Review
    9. Practice
    10. Homework
    11. References
    12. Solutions
  6. 5 Continuous Random Variables
    1. Introduction
    2. 5.1 Properties of Continuous Probability Density Functions
    3. 5.2 The Uniform Distribution
    4. 5.3 The Exponential Distribution
    5. Key Terms
    6. Chapter Review
    7. Formula Review
    8. Practice
    9. Homework
    10. References
    11. Solutions
  7. 6 The Normal Distribution
    1. Introduction
    2. 6.1 The Standard Normal Distribution
    3. 6.2 Using the Normal Distribution
    4. 6.3 Estimating the Binomial with the Normal Distribution
    5. Key Terms
    6. Chapter Review
    7. Formula Review
    8. Practice
    9. Homework
    10. References
    11. Solutions
  8. 7 The Central Limit Theorem
    1. Introduction
    2. 7.1 The Central Limit Theorem for Sample Means
    3. 7.2 Using the Central Limit Theorem
    4. 7.3 The Central Limit Theorem for Proportions
    5. 7.4 Finite Population Correction Factor
    6. Key Terms
    7. Chapter Review
    8. Formula Review
    9. Practice
    10. Homework
    11. References
    12. Solutions
  9. 8 Confidence Intervals
    1. Introduction
    2. 8.1 A Confidence Interval for a Population Standard Deviation, Known or Large Sample Size
    3. 8.2 A Confidence Interval for a Population Standard Deviation Unknown, Small Sample Case
    4. 8.3 A Confidence Interval for A Population Proportion
    5. 8.4 Calculating the Sample Size n: Continuous and Binary Random Variables
    6. Key Terms
    7. Chapter Review
    8. Formula Review
    9. Practice
    10. Homework
    11. References
    12. Solutions
  10. 9 Hypothesis Testing with One Sample
    1. Introduction
    2. 9.1 Null and Alternative Hypotheses
    3. 9.2 Outcomes and the Type I and Type II Errors
    4. 9.3 Distribution Needed for Hypothesis Testing
    5. 9.4 Full Hypothesis Test Examples
    6. Key Terms
    7. Chapter Review
    8. Formula Review
    9. Practice
    10. Homework
    11. References
    12. Solutions
  11. 10 Hypothesis Testing with Two Samples
    1. Introduction
    2. 10.1 Comparing Two Independent Population Means
    3. 10.2 Cohen's Standards for Small, Medium, and Large Effect Sizes
    4. 10.3 Test for Differences in Means: Assuming Equal Population Variances
    5. 10.4 Comparing Two Independent Population Proportions
    6. 10.5 Two Population Means with Known Standard Deviations
    7. 10.6 Matched or Paired Samples
    8. Key Terms
    9. Chapter Review
    10. Formula Review
    11. Practice
    12. Homework
    13. Bringing It Together: Homework
    14. References
    15. Solutions
  12. 11 The Chi-Square Distribution
    1. Introduction
    2. 11.1 Facts About the Chi-Square Distribution
    3. 11.2 Test of a Single Variance
    4. 11.3 Goodness-of-Fit Test
    5. 11.4 Test of Independence
    6. 11.5 Test for Homogeneity
    7. 11.6 Comparison of the Chi-Square Tests
    8. Key Terms
    9. Chapter Review
    10. Formula Review
    11. Practice
    12. Homework
    13. Bringing It Together: Homework
    14. References
    15. Solutions
  13. 12 F Distribution and One-Way ANOVA
    1. Introduction
    2. 12.1 Test of Two Variances
    3. 12.2 One-Way ANOVA
    4. 12.3 The F Distribution and the F-Ratio
    5. 12.4 Facts About the F Distribution
    6. Key Terms
    7. Chapter Review
    8. Formula Review
    9. Practice
    10. Homework
    11. References
    12. Solutions
  14. 13 Linear Regression and Correlation
    1. Introduction
    2. 13.1 The Correlation Coefficient r
    3. 13.2 Testing the Significance of the Correlation Coefficient
    4. 13.3 Linear Equations
    5. 13.4 The Regression Equation
    6. 13.5 Interpretation of Regression Coefficients: Elasticity and Logarithmic Transformation
    7. 13.6 Predicting with a Regression Equation
    8. 13.7 How to Use Microsoft Excel® for Regression Analysis
    9. Key Terms
    10. Chapter Review
    11. Practice
    12. Solutions
  15. A | Statistical Tables
  16. B | Mathematical Phrases, Symbols, and Formulas
  17. Index

2.1 Display Data

84.

Table 2.63 contains the 2010 obesity rates in U.S. states and Washington, DC.

State Percent (%) State Percent (%) State Percent (%)
Alabama 32.2 Kentucky 31.3 North Dakota 27.2
Alaska 24.5 Louisiana 31.0 Ohio 29.2
Arizona 24.3 Maine 26.8 Oklahoma 30.4
Arkansas 30.1 Maryland 27.1 Oregon 26.8
California 24.0 Massachusetts 23.0 Pennsylvania 28.6
Colorado 21.0 Michigan 30.9 Rhode Island 25.5
Connecticut 22.5 Minnesota 24.8 South Carolina 31.5
Delaware 28.0 Mississippi 34.0 South Dakota 27.3
Washington, DC 22.2 Missouri 30.5 Tennessee 30.8
Florida 26.6 Montana 23.0 Texas 31.0
Georgia 29.6 Nebraska 26.9 Utah 22.5
Hawaii 22.7 Nevada 22.4 Vermont 23.2
Idaho 26.5 New Hampshire 25.0 Virginia 26.0
Illinois 28.2 New Jersey 23.8 Washington 25.5
Indiana 29.6 New Mexico 25.1 West Virginia 32.5
Iowa 28.4 New York 23.9 Wisconsin 26.3
Kansas 29.4 North Carolina 27.8 Wyoming 25.1
Table 2.63
  1. Use a random number generator to randomly pick eight states. Construct a bar graph of the obesity rates of those eight states.
  2. Construct a bar graph for all the states beginning with the letter "A."
  3. Construct a bar graph for all the states beginning with the letter "M."
85.

Suppose that three book publishers were interested in the number of fiction paperbacks adult consumers purchase per month. Each publisher conducted a survey. In the survey, adult consumers were asked the number of fiction paperbacks they had purchased the previous month. The results are as follows:

# of books Freq. Rel. freq.
0 10
1 12
2 16
3 12
4 8
5 6
6 2
8 2
Table 2.64 Publisher A
# of books Freq. Rel. freq.
0 18
1 24
2 24
3 22
4 15
5 10
7 5
9 1
Table 2.65 Publisher B
# of books Freq. Rel. freq.
0–1 20
2–3 35
4–5 12
6–7 2
8–9 1
Table 2.66 Publisher C
  1. Find the relative frequencies for each survey. Write them in the charts.
  2. Use the frequency column to construct a histogram for each publisher's survey. For Publishers A and B, make bar widths of one. For Publisher C, make bar widths of two.
  3. In complete sentences, give two reasons why the graphs for Publishers A and B are not identical.
  4. Would you have expected the graph for Publisher C to look like the other two graphs? Why or why not?
  5. Make new histograms for Publisher A and Publisher B. This time, make bar widths of two.
  6. Now, compare the graph for Publisher C to the new graphs for Publishers A and B. Are the graphs more similar or more different? Explain your answer.
86.

Often, cruise ships conduct all on-board transactions, with the exception of gambling, on a cashless basis. At the end of the cruise, guests pay one bill that covers all onboard transactions. Suppose that 60 single travelers and 70 couples were surveyed as to their on-board bills for a seven-day cruise from Los Angeles to the Mexican Riviera. Following is a summary of the bills for each group.

Amount($) Frequency Rel. frequency
51–100 5
101–150 10
151–200 15
201–250 15
251–300 10
301–350 5
Table 2.67 Singles
Amount($) Frequency Rel. frequency
100–150 5
201–250 5
251–300 5
301–350 5
351–400 10
401–450 10
451–500 10
501–550 10
551–600 5
601–650 5
Table 2.68 Couples
  1. Fill in the relative frequency for each group.
  2. Construct a histogram for the singles group. Scale the x-axis by $50 widths. Use relative frequency on the y-axis.
  3. Construct a histogram for the couples group. Scale the x-axis by $50 widths. Use relative frequency on the y-axis.
  4. Compare the two graphs:
    1. List two similarities between the graphs.
    2. List two differences between the graphs.
    3. Overall, are the graphs more similar or different?
  5. Construct a new graph for the couples by hand. Since each couple is paying for two individuals, instead of scaling the x-axis by $50, scale it by $100. Use relative frequency on the y-axis.
  6. Compare the graph for the singles with the new graph for the couples:
    1. List two similarities between the graphs.
    2. Overall, are the graphs more similar or different?
  7. How did scaling the couples graph differently change the way you compared it to the singles graph?
  8. Based on the graphs, do you think that individuals spend the same amount, more or less, as singles as they do person by person as a couple? Explain why in one or two complete sentences.
87.

Twenty-five randomly selected students were asked the number of movies they watched the previous week. The results are as follows.

# of movies Frequency Relative frequency Cumulative relative frequency
0 5
1 9
2 6
3 4
4 1
Table 2.69
  1. Construct a histogram of the data.
  2. Complete the columns of the chart.

Use the following information to answer the next two exercises: Suppose one hundred eleven people who shopped in a special t-shirt store were asked the number of t-shirts they own costing more than $19 each.

A histogram showing the results of a survey.  Of 111 respondents, 5 own 1 t-shirt costing more than $19, 17 own 2, 23 own 3, 39 own 4, 25 own 5, 2 own 6, and no respondents own 7.
88.

The percentage of people who own at most three t-shirts costing more than $19 each is approximately:

  1. 21
  2. 59
  3. 41
  4. Cannot be determined
89.

If the data were collected by asking the first 111 people who entered the store, then the type of sampling is:

  1. cluster
  2. simple random
  3. stratified
  4. convenience
90.

Following are the 2010 obesity rates by U.S. states and Washington, DC.

State Percent (%) State Percent (%) State Percent (%)
Alabama 32.2 Kentucky 31.3 North Dakota 27.2
Alaska 24.5 Louisiana 31.0 Ohio 29.2
Arizona 24.3 Maine 26.8 Oklahoma 30.4
Arkansas 30.1 Maryland 27.1 Oregon 26.8
California 24.0 Massachusetts 23.0 Pennsylvania 28.6
Colorado 21.0 Michigan 30.9 Rhode Island 25.5
Connecticut 22.5 Minnesota 24.8 South Carolina 31.5
Delaware 28.0 Mississippi 34.0 South Dakota 27.3
Washington, DC 22.2 Missouri 30.5 Tennessee 30.8
Florida 26.6 Montana 23.0 Texas 31.0
Georgia 29.6 Nebraska 26.9 Utah 22.5
Hawaii 22.7 Nevada 22.4 Vermont 23.2
Idaho 26.5 New Hampshire 25.0 Virginia 26.0
Illinois 28.2 New Jersey 23.8 Washington 25.5
Indiana 29.6 New Mexico 25.1 West Virginia 32.5
Iowa 28.4 New York 23.9 Wisconsin 26.3
Kansas 29.4 North Carolina 27.8 Wyoming 25.1
Table 2.70

Construct a bar graph of obesity rates of your state and the four states closest to your state. Hint: Label the x-axis with the states.

2.2 Measures of the Location of the Data

91.

The median age for U.S. blacks currently is 30.9 years; for U.S. whites it is 42.3 years.

  1. Based upon this information, give two reasons why the black median age could be lower than the white median age.
  2. Does the lower median age for blacks necessarily mean that blacks die younger than whites? Why or why not?
  3. How might it be possible for blacks and whites to die at approximately the same age, but for the median age for whites to be higher?
92.

Six hundred adult Americans were asked by telephone poll, "What do you think constitutes a middle-class income?" The results are in Table 2.71. Also, include left endpoint, but not the right endpoint.

Salary ($) Relative frequency
< 20,000 0.02
20,000–25,000 0.09
25,000–30,000 0.19
30,000–40,000 0.26
40,000–50,000 0.18
50,000–75,000 0.17
75,000–99,999 0.02
100,000+ 0.01
Table 2.71
  1. What percentage of the survey answered "not sure"?
  2. What percentage think that middle-class is from $25,000 to $50,000?
  3. Construct a histogram of the data.
    1. Should all bars have the same width, based on the data? Why or why not?
    2. How should the <20,000 and the 100,000+ intervals be handled? Why?
  4. Find the 40th and 80th percentiles
  5. Construct a bar graph of the data

2.3 Measures of the Center of the Data

93.

The most obese countries in the world have obesity rates that range from 11.4% to 74.6%. This data is summarized in the following table.

Percent of population obese Number of countries
11.4–20.45 29
20.45–29.45 13
29.45–38.45 4
38.45–47.45 0
47.45–56.45 2
56.45–65.45 1
65.45–74.45 0
74.45–83.45 1
Table 2.72
  1. What is the best estimate of the average obesity percentage for these countries?
  2. The United States has an average obesity rate of 33.9%. Is this rate above average or below?
  3. How does the United States compare to other countries?
94.

Table 2.73 gives the percent of children under five considered to be underweight. What is the best estimate for the mean percentage of underweight children?

Percent of underweight children Number of countries
16–21.45 23
21.45–26.9 4
26.9–32.35 9
32.35–37.8 7
37.8–43.25 6
43.25–48.7 1
Table 2.73

2.4 Sigma Notation and Calculating the Arithmetic Mean

95.

A sample of 10 prices is chosen from a population of 100 similar items. The values obtained from the sample, and the values for the population, are given in Table 2.74 and Table 2.75 respectively.

  1. Is the mean of the sample within $1 of the population mean?
  2. What is the difference in the sample and population means?
Prices of the sample
$21
$23
$21
$24
$22
$22
$25
$21
$20
$24
Table 2.74
Prices of the population Frequency
$20 20
$21 35
$22 15
$23 10
$24 18
$25 2
Table 2.75
96.

A standardized test is given to ten people at the beginning of the school year with the results given in Table 2.76 below. At the end of the year the same people were again tested.

  1. What is the average improvement?
  2. Does it matter if the means are subtracted, or if the individual values are subtracted?
Student Beginning score Ending score
1 1100 1120
2 980 1030
3 1200 1208
4 998 1000
5 893 948
6 1015 1030
7 1217 1224
8 1232 1245
9 967 988
10 988 997
Table 2.76
97.

A small class of 7 students has a mean grade of 82 on a test. If six of the grades are 80, 82,86, 90, 90, and 95, what is the other grade?

98.

A class of 20 students has a mean grade of 80 on a test. Nineteen of the students has a mean grade between 79 and 82, inclusive.

  1. What is the lowest possible grade of the other student?
  2. What is the highest possible grade of the other student?
99.

If the mean of 20 prices is $10.39, and 5 of the items with a mean of $10.99 are sampled, what is the mean of the other 15 prices?

2.5 Geometric Mean

100.

An investment grows from $10,000 to $22,000 in five years. What is the average rate of return?

101.

An initial investment of $20,000 grows at a rate of 9% for five years. What is its final value?

102.

A culture contains 1,300 bacteria. The bacteria grow to 2,000 in 10 hours. What is the rate at which the bacteria grow per hour to the nearest tenth of a percent?

103.

An investment of $3,000 grows at a rate of 5% for one year, then at a rate of 8% for three years. What is the average rate of return to the nearest hundredth of a percent?

104.

An investment of $10,000 goes down to $9,500 in four years. What is the average return per year to the nearest hundredth of a percent?

2.6 Skewness and the Mean, Median, and Mode

105.

The median age of the U.S. population in 1980 was 30.0 years. In 1991, the median age was 33.1 years.

  1. What does it mean for the median age to rise?
  2. Give two reasons why the median age could rise.
  3. For the median age to rise, is the actual number of children less in 1991 than it was in 1980? Why or why not?

2.7 Measures of the Spread of the Data

Use the following information to answer the next nine exercises: The population parameters below describe the full-time equivalent number of students (FTES) each year at Lake Tahoe Community College from 1976–1977 through 2004–2005.

  • μ = 1000 FTES
  • median = 1,014 FTES
  • σ = 474 FTES
  • first quartile = 528.5 FTES
  • third quartile = 1,447.5 FTES
  • n = 29 years
106.

A sample of 11 years is taken. About how many are expected to have a FTES of 1014 or above? Explain how you determined your answer.

107.

75% of all years have an FTES:

  1. at or below: _____
  2. at or above: _____
108.

The population standard deviation = _____

109.

What percent of the FTES were from 528.5 to 1447.5? How do you know?

110.

What is the IQR? What does the IQR represent?

111.

How many standard deviations away from the mean is the median?

Additional Information: The population FTES for 2005–2006 through 2010–2011 was given in an updated report. The data are reported here.

Year 2005–06 2006–07 2007–08 2008–09 2009–10 2010–11
Total FTES 1,585 1,690 1,735 1,935 2,021 1,890
Table 2.77
112.

Calculate the mean, median, standard deviation, the first quartile, the third quartile and the IQR. Round to one decimal place.

113.

Compare the IQR for the FTES for 1976–77 through 2004–2005 with the IQR for the FTES for 2005-2006 through 2010–2011. Why do you suppose the IQRs are so different?

114.

Three students were applying to the same graduate school. They came from schools with different grading systems. Which student had the best GPA when compared to other students at his school? Explain how you determined your answer.

Student GPA School Average GPA School Standard Deviation
Thuy 2.7 3.2 0.8
Vichet 87 75 20
Kamala 8.6 8 0.4
Table 2.78
115.

A music school has budgeted to purchase three musical instruments. They plan to purchase a piano costing $3,000, a guitar costing $550, and a drum set costing $600. The mean cost for a piano is $4,000 with a standard deviation of $2,500. The mean cost for a guitar is $500 with a standard deviation of $200. The mean cost for drums is $700 with a standard deviation of $100. Which cost is the lowest, when compared to other instruments of the same type? Which cost is the highest when compared to other instruments of the same type. Justify your answer.

116.

An elementary school class ran one mile with a mean of 11 minutes and a standard deviation of three minutes. Rachel, a student in the class, ran one mile in eight minutes. A junior high school class ran one mile with a mean of nine minutes and a standard deviation of two minutes. Kenji, a student in the class, ran 1 mile in 8.5 minutes. A high school class ran one mile with a mean of seven minutes and a standard deviation of four minutes. Nedda, a student in the class, ran one mile in eight minutes.

  1. Why is Kenji considered a better runner than Nedda, even though Nedda ran faster than he?
  2. Who is the fastest runner with respect to his or her class? Explain why.
117.

The most obese countries in the world have obesity rates that range from 11.4% to 74.6%. This data is summarized in Table 14.

Percent of population obeseNumber of countries
11.4–20.4529
20.45–29.4513
29.45–38.454
38.45–47.450
47.45–56.452
56.45–65.451
65.45–74.450
74.45–83.451
Table 2.79

What is the best estimate of the average obesity percentage for these countries? What is the standard deviation for the listed obesity rates? The United States has an average obesity rate of 33.9%. Is this rate above average or below? How “unusual” is the United States’ obesity rate compared to the average rate? Explain.

118.

Table 2.80 gives the percent of children under five considered to be underweight.

Percent of underweight children Number of countries
16–21.4523
21.45–26.94
26.9–32.359
32.35–37.87
37.8–43.256
43.25–48.71
Table 2.80

What is the best estimate for the mean percentage of underweight children? What is the standard deviation? Which interval(s) could be considered unusual? Explain.

Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/introductory-business-statistics/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/introductory-business-statistics/pages/1-introduction
Citation information

© Nov 29, 2017 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.