Skip to Content
OpenStax Logo
Introductory Business Statistics

2.3 Measures of the Center of the Data

Introductory Business Statistics2.3 Measures of the Center of the Data
Buy book
  1. Preface
  2. 1 Sampling and Data
    1. Introduction
    2. 1.1 Definitions of Statistics, Probability, and Key Terms
    3. 1.2 Data, Sampling, and Variation in Data and Sampling
    4. 1.3 Levels of Measurement
    5. 1.4 Experimental Design and Ethics
    6. Key Terms
    7. Chapter Review
    8. Homework
    9. References
    10. Solutions
  3. 2 Descriptive Statistics
    1. Introduction
    2. 2.1 Display Data
    3. 2.2 Measures of the Location of the Data
    4. 2.3 Measures of the Center of the Data
    5. 2.4 Sigma Notation and Calculating the Arithmetic Mean
    6. 2.5 Geometric Mean
    7. 2.6 Skewness and the Mean, Median, and Mode
    8. 2.7 Measures of the Spread of the Data
    9. Key Terms
    10. Chapter Review
    11. Formula Review
    12. Practice
    13. Homework
    14. Bringing It Together: Homework
    15. References
    16. Solutions
  4. 3 Probability Topics
    1. Introduction
    2. 3.1 Terminology
    3. 3.2 Independent and Mutually Exclusive Events
    4. 3.3 Two Basic Rules of Probability
    5. 3.4 Contingency Tables and Probability Trees
    6. 3.5 Venn Diagrams
    7. Key Terms
    8. Chapter Review
    9. Formula Review
    10. Practice
    11. Bringing It Together: Practice
    12. Homework
    13. Bringing It Together: Homework
    14. References
    15. Solutions
  5. 4 Discrete Random Variables
    1. Introduction
    2. 4.1 Hypergeometric Distribution
    3. 4.2 Binomial Distribution
    4. 4.3 Geometric Distribution
    5. 4.4 Poisson Distribution
    6. Key Terms
    7. Chapter Review
    8. Formula Review
    9. Practice
    10. Homework
    11. References
    12. Solutions
  6. 5 Continuous Random Variables
    1. Introduction
    2. 5.1 Properties of Continuous Probability Density Functions
    3. 5.2 The Uniform Distribution
    4. 5.3 The Exponential Distribution
    5. Key Terms
    6. Chapter Review
    7. Formula Review
    8. Practice
    9. Homework
    10. References
    11. Solutions
  7. 6 The Normal Distribution
    1. Introduction
    2. 6.1 The Standard Normal Distribution
    3. 6.2 Using the Normal Distribution
    4. 6.3 Estimating the Binomial with the Normal Distribution
    5. Key Terms
    6. Chapter Review
    7. Formula Review
    8. Practice
    9. Homework
    10. References
    11. Solutions
  8. 7 The Central Limit Theorem
    1. Introduction
    2. 7.1 The Central Limit Theorem for Sample Means
    3. 7.2 Using the Central Limit Theorem
    4. 7.3 The Central Limit Theorem for Proportions
    5. 7.4 Finite Population Correction Factor
    6. Key Terms
    7. Chapter Review
    8. Formula Review
    9. Practice
    10. Homework
    11. References
    12. Solutions
  9. 8 Confidence Intervals
    1. Introduction
    2. 8.1 A Confidence Interval for a Population Standard Deviation, Known or Large Sample Size
    3. 8.2 A Confidence Interval for a Population Standard Deviation Unknown, Small Sample Case
    4. 8.3 A Confidence Interval for A Population Proportion
    5. 8.4 Calculating the Sample Size n: Continuous and Binary Random Variables
    6. Key Terms
    7. Chapter Review
    8. Formula Review
    9. Practice
    10. Homework
    11. References
    12. Solutions
  10. 9 Hypothesis Testing with One Sample
    1. Introduction
    2. 9.1 Null and Alternative Hypotheses
    3. 9.2 Outcomes and the Type I and Type II Errors
    4. 9.3 Distribution Needed for Hypothesis Testing
    5. 9.4 Full Hypothesis Test Examples
    6. Key Terms
    7. Chapter Review
    8. Formula Review
    9. Practice
    10. Homework
    11. References
    12. Solutions
  11. 10 Hypothesis Testing with Two Samples
    1. Introduction
    2. 10.1 Comparing Two Independent Population Means
    3. 10.2 Cohen's Standards for Small, Medium, and Large Effect Sizes
    4. 10.3 Test for Differences in Means: Assuming Equal Population Variances
    5. 10.4 Comparing Two Independent Population Proportions
    6. 10.5 Two Population Means with Known Standard Deviations
    7. 10.6 Matched or Paired Samples
    8. Key Terms
    9. Chapter Review
    10. Formula Review
    11. Practice
    12. Homework
    13. Bringing It Together: Homework
    14. References
    15. Solutions
  12. 11 The Chi-Square Distribution
    1. Introduction
    2. 11.1 Facts About the Chi-Square Distribution
    3. 11.2 Test of a Single Variance
    4. 11.3 Goodness-of-Fit Test
    5. 11.4 Test of Independence
    6. 11.5 Test for Homogeneity
    7. 11.6 Comparison of the Chi-Square Tests
    8. Key Terms
    9. Chapter Review
    10. Formula Review
    11. Practice
    12. Homework
    13. Bringing It Together: Homework
    14. References
    15. Solutions
  13. 12 F Distribution and One-Way ANOVA
    1. Introduction
    2. 12.1 Test of Two Variances
    3. 12.2 One-Way ANOVA
    4. 12.3 The F Distribution and the F-Ratio
    5. 12.4 Facts About the F Distribution
    6. Key Terms
    7. Chapter Review
    8. Formula Review
    9. Practice
    10. Homework
    11. References
    12. Solutions
  14. 13 Linear Regression and Correlation
    1. Introduction
    2. 13.1 The Correlation Coefficient r
    3. 13.2 Testing the Significance of the Correlation Coefficient
    4. 13.3 Linear Equations
    5. 13.4 The Regression Equation
    6. 13.5 Interpretation of Regression Coefficients: Elasticity and Logarithmic Transformation
    7. 13.6 Predicting with a Regression Equation
    8. 13.7 How to Use Microsoft Excel® for Regression Analysis
    9. Key Terms
    10. Chapter Review
    11. Practice
    12. Solutions
  15. A | Statistical Tables
  16. B | Mathematical Phrases, Symbols, and Formulas
  17. Index

The "center" of a data set is also a way of describing location. The two most widely used measures of the "center" of the data are the mean (average) and the median. To calculate the mean weight of 50 people, add the 50 weights together and divide by 50. Technically this is the arithmetic mean. We will discuss the geometric mean later. To find the median weight of the 50 people, order the data and find the number that splits the data into two equal parts meaning an equal number of observations on each side. The weight of 25 people are below this weight and 25 people are heavier than this weight. The median is generally a better measure of the center when there are extreme values or outliers because it is not affected by the precise numerical values of the outliers. The mean is the most common measure of the center.

NOTE

The words “mean” and “average” are often used interchangeably. The substitution of one word for the other is common practice. The technical term is “arithmetic mean” and “average” is technically a center location. Formally, the arithmetic mean is called the first moment of the distribution by mathematicians. However, in practice among non-statisticians, “average" is commonly accepted for “arithmetic mean.”

When each value in the data set is not unique, the mean can be calculated by multiplying each distinct value by its frequency and then dividing the sum by the total number of data values. The letter used to represent the sample mean is an x with a bar over it (pronounced “x bar”): x x .

The Greek letter μ (pronounced "mew") represents the population mean. One of the requirements for the sample mean to be a good estimate of the population mean is for the sample taken to be truly random.

To see that both ways of calculating the mean are the same, consider the sample:
1; 1; 1; 2; 2; 3; 4; 4; 4; 4; 4

x = 1 + 1 + 1 + 2 + 2 + 3 + 4 + 4 + 4 + 4 + 4 11 = 2.7 x = 1 + 1 + 1 + 2 + 2 + 3 + 4 + 4 + 4 + 4 + 4 11 =2.7
x = 3(1)+2(2)+1(3)+5(4) 11 =2.7 x = 3(1)+2(2)+1(3)+5(4) 11 =2.7

In the second calculation, the frequencies are 3, 2, 1, and 5.

You can quickly find the location of the median by using the expression n + 1 2 n + 1 2 .

The letter n is the total number of data values in the sample. If n is an odd number, the median is the middle value of the ordered data (ordered smallest to largest). If n is an even number, the median is equal to the two middle values added together and divided by two after the data has been ordered. For example, if the total number of data values is 97, then n + 1 2 n + 1 2 = 97 + 1 2 97 + 1 2 = 49. The median is the 49th value in the ordered data. If the total number of data values is 100, then n + 1 2 n + 1 2 = 100 + 1 2 100 + 1 2 = 50.5. The median occurs midway between the 50th and 51st values. The location of the median and the value of the median are not the same. The upper case letter M is often used to represent the median. The next example illustrates the location of the median and the value of the median.

Example 2.24

AIDS data indicating the number of months a patient with AIDS lives after taking a new antibody drug are as follows (smallest to largest):
3; 4; 8; 8; 10; 11; 12; 13; 14; 15; 15; 16; 16; 17; 17; 18; 21; 22; 22; 24; 24; 25; 26; 26; 27; 27; 29; 29; 31; 32; 33; 33; 34; 34; 35; 37; 40; 44; 44; 47;
Calculate the mean and the median.

Solution 2.24

The calculation for the mean is:

x = [ 3 + 4 + ( 8 ) ( 2 ) + 10 + 11 + 12 + 13 + 14 + ( 15 ) ( 2 ) + ( 16 ) ( 2 ) + ... + 35 + 37 + 40 + ( 44 ) ( 2 ) + 47 ] 40 = 23.6 x = [ 3 + 4 + ( 8 ) ( 2 ) + 10 + 11 + 12 + 13 + 14 + ( 15 ) ( 2 ) + ( 16 ) ( 2 ) + ... + 35 + 37 + 40 + ( 44 ) ( 2 ) + 47 ] 40 =23.6
To find the median, M, first use the formula for the location. The location is:
n + 1 2 = 40 + 1 2 = 20.5 n + 1 2 = 40 + 1 2 =20.5
Starting at the smallest value, the median is located between the 20th and 21st values (the two 24s):
3; 4; 8; 8; 10; 11; 12; 13; 14; 15; 15; 16; 16; 17; 17; 18; 21; 22; 22; 24; 24; 25; 26; 26; 27; 27; 29; 29; 31; 32; 33; 33; 34; 34; 35; 37; 40; 44; 44; 47;

M = 24 + 24 2 = 24 M= 24 + 24 2 =24

Example 2.25

Suppose that in a small town of 50 people, one person earns $5,000,000 per year and the other 49 each earn $30,000. Which is the better measure of the "center": the mean or the median?

Solution 2.25

x = 5,000,000+49(30,000) 50 =129,400 x = 5,000,000+49(30,000) 50 =129,400

M = 30,000

(There are 49 people who earn $30,000 and one person who earns $5,000,000.)

The median is a better measure of the "center" than the mean because 49 of the values are 30,000 and one is 5,000,000. The 5,000,000 is an outlier. The 30,000 gives us a better sense of the middle of the data.

Another measure of the center is the mode. The mode is the most frequent value. There can be more than one mode in a data set as long as those values have the same frequency and that frequency is the highest. A data set with two modes is called bimodal.

Example 2.26

Statistics exam scores for 20 students are as follows:

50; 53; 59; 59; 63; 63; 72; 72; 72; 72; 72; 76; 78; 81; 83; 84; 84; 84; 90; 93

Find the mode.

Solution 2.26

The most frequent score is 72, which occurs five times. Mode = 72.

Example 2.27

Five real estate exam scores are 430, 430, 480, 480, 495. The data set is bimodal because the scores 430 and 480 each occur twice.

When is the mode the best measure of the "center"? Consider a weight loss program that advertises a mean weight loss of six pounds the first week of the program. The mode might indicate that most people lose two pounds the first week, making the program less appealing.

NOTE

The mode can be calculated for qualitative data as well as for quantitative data. For example, if the data set is: red, red, red, green, green, yellow, purple, black, blue, the mode is red.

Calculating the Arithmetic Mean of Grouped Frequency Tables

When only grouped data is available, you do not know the individual data values (we only know intervals and interval frequencies); therefore, you cannot compute an exact mean for the data set. What we must do is estimate the actual mean by calculating the mean of a frequency table. A frequency table is a data representation in which grouped data is displayed along with the corresponding frequencies. To calculate the mean from a grouped frequency table we can apply the basic definition of mean: mean = data sum number of data values data sum number of data values We simply need to modify the definition to fit within the restrictions of a frequency table.

Since we do not know the individual data values we can instead find the midpoint of each interval. The midpoint is lower boundary+upper boundary 2 lower boundary+upper boundary 2 . We can now modify the mean definition to be Mean of Frequency Table= fm f Mean of Frequency Table= fm f where f = the frequency of the interval and m = the midpoint of the interval.

Example 2.28

A frequency table displaying professor Blount’s last statistic test is shown. Find the best estimate of the class mean.

Grade interval Number of students
50–56.5 1
56.5–62.5 0
62.5–68.5 4
68.5–74.5 4
74.5–80.5 2
80.5–86.5 3
86.5–92.5 4
92.5–98.5 1
Table 2.24
Solution 2.28
  • Find the midpoints for all intervals
Grade interval Midpoint
50–56.5 53.25
56.5–62.5 59.5
62.5–68.5 65.5
68.5–74.5 71.5
74.5–80.5 77.5
80.5–86.5 83.5
86.5–92.5 89.5
92.5–98.5 95.5
Table 2.25
  • Calculate the sum of the product of each interval frequency and midpoint. fm fm

    53.25(1)+59.5(0)+65.5(4)+71.5(4)+77.5(2)+83.5(3)+89.5(4)+95.5(1)=1460.25 53.25(1)+59.5(0)+65.5(4)+71.5(4)+77.5(2)+83.5(3)+89.5(4)+95.5(1)=1460.25
  • μ= fm f = 1460.25 19 =76.86 μ= fm f = 1460.25 19 =76.86
Try It 2.28

Maris conducted a study on the effect that playing video games has on memory recall. As part of her study, she compiled the following data:

Hours teenagers spend on video games Number of teenagers
0–3.53
3.5–7.57
7.5–11.512
11.5–15.57
15.5–19.59
Table 2.26

What is the best estimate for the mean number of hours spent playing video games?

Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/introductory-business-statistics/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/introductory-business-statistics/pages/1-introduction
Citation information

© Nov 29, 2017 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.