Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo

18.1 Memory is Classified Based on Time Course and Type of Information Stored

Annese, J., Schenker-Ahmed, N. M., Bartsch, H., Maechler, P., Sheh, C., Thomas, N., ... & Corkin, S. (2014). Postmortem examination of patient H.M.'s brain based on histological sectioning and digital 3D reconstruction. Nature Communications, 5, 3122. https://doi.org/10.1038/ncomms4122

Augustinack, J. C., van der Kouwe, A. J., Salat, D. H., Benner, T., Stevens, A. A., Annese, J., ... & Corkin, S. (2014). H.M.'s contributions to neuroscience: a review and autopsy studies. Hippocampus, 24(11), 1267-1286. https://doi.org/10.1002/hipo.22354

Barnes, C. A. (1979). Memory deficits associated with senescence – neurophysiological and behavioral – study in the rat. Journal of Comparative and Physiological Psychology, 93, 74–104.

Barnes, C. A., Suster, M. S., Shen, J., & McNaughton, B. L. (1997). Multistability of cognitive maps in the hippocampus of old rats. Nature, 388(6639), 272-275. https://doi.org/10.1038/40859

Frick, K. M., Baxter, M. G., Markowska, A. L., Olton, D. S., and Price, D. L. (1995). Age-related spatial reference and working-memory deficits assessed in the water maze. Neurobiology of Aging, 16, 149–160.

Gage, F. H., Dunnett, S. B., & Bjorklund, A. (1984). Spatial learning and motor deficits in aged rats. Neurobiology of Aging, 5, 43–48.

Gallagher, M., & Burwell, R. D. (1989). Relationship of age-related decline across several behavioral domains. Neurobiology of Aging, 10, 691–708.

Granzotto, A., & Sensi, S. L. (2023). Once upon a time, the Amyloid Cascade Hypothesis. Ageing Research Reviews. https://doi.org/10.1016/j.arr.2023.102161

Haddad, H. W., Malone, G. W., Comardelle, N. J., Degueure, A. E., Kaye, A. M., & Kaye, A. D. (2022). Aducanumab, a Novel Anti-Amyloid Monoclonal Antibody, for the Treatment of Alzheimer's Disease: A Comprehensive Review. Health Psychology Research, 10(1), 31925. https://doi.org/10.52965/001c.31925

Herrup, K. (2022). Fallacies in Neuroscience: The Alzheimer's Edition. eNeuro, 9(1). https://doi.org/10.1523/ENEURO.0530-21.2021

Josselyn, S. A., & Frankland, P. W. (2012). Infantile amnesia: a neurogenic hypothesis. Learning & Memory, 19(9), 423-433. https://doi.org/10.1101/lm.021311.110

Kleen, J. K., Scott, R. C., Holmes, G. L., Roberts, D. W., Rundle, M. M., Testorf, M., ... & Jobst, B. C. (2013). Hippocampal interictal epileptiform activity disrupts cognition in humans. Neurology, 81(1), 18-24. https://doi.org/10.1212/WNL.0b013e318297ee50

Kopelman, M. D. (2022). What is the Korsakoff syndrome? - a paper in tribute to Prof Alwyn Lishman. Cognitive Neuropsychiatry, 27(4), 296-313. https://doi.org/10.1080/13546805.2022.2067472

Lenck-Santini, P. P., & Scott, R. C. (2015). Mechanisms Responsible for Cognitive Impairment in Epilepsy. Cold Spring Harbor Perspectives in Medicine, 5(10). https://doi.org/10.1101/cshperspect.a022772

Li, K. Y., Huang, L. C., Chang, Y. P., & Yang, Y. H. (2020). The effects of lacosamide on cognitive function and psychiatric profiles in patients with epilepsy. Epilepsy & Behavior, 113, 107580. https://doi.org/10.1016/j.yebeh.2020.107580

Li, R. X., Ma, Y. H., Tan, L., & Yu, J. T. (2022). Prospective biomarkers of Alzheimer's disease: A systematic review and meta-analysis. Ageing Research Reviews, 81, 101699. https://doi.org/10.1016/j.arr.2022.101699

Loftus, E. F. (2005). Planting misinformation in the human mind: A 30-year investigation of the malleability of memory. Learning & Memory, 12(4), 361–366. https://doi.org/10.1101/lm.94705

McGaugh, J. L. (2000). Memory—a century of consolidation. Science, 287(5451), 248-251. https://doi.org/10.1126/science.287.5451.248

Nader, K., Schafe, G. E., & Le Doux, J. E. (2000). Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature, 406(6797), 722-726. https://doi.org/10.1038/35021052

Nyffeler, M., Yee, B. K., Feldon, J., & Knuesel, I. (2010). Abnormal differentiation of newborn granule cells in age-related working memory impairments. Neurobiology of Aging, 31, 1956–1974.

Rajan, K. B., Weuve, J., Barnes, L. L., McAninch, E. A., Wilson, R. S., & Evans, D. A. (2021). Population estimate of people with clinical Alzheimer's disease and mild cognitive impairment in the United States (2020-2060). Alzheimer's & Dementia, 17(12), 1966-1975. https://doi.org/10.1002/alz.12362

Scharfman, H. E. (2007). The neurobiology of epilepsy. Current Neurology and Neuroscience Reports, 7(4), 348-354. https://doi.org/10.1007/s11910-007-0053-z

Scheffer, I. E., & Nabbout, R. (2019). SCN1A-related phenotypes: Epilepsy and beyond. Epilepsia, 60 Suppl 3, S17-S24. https://doi.org/10.1111/epi.16386

Squire, L. R. (2009). Memory and brain systems: 1969-2009. Journal of Neuroscience, 29(41), 12711-12716. https://doi.org/10.1523/JNEUROSCI.3575-09.2009

Sperling, George (1963). A model for visual memory tasks. Human Factors, 5: 19–31.

Talarico, J. M., & Rubin, D. C. (2003). Confidence, not consistency, characterizes flashbulb memories. Psychological Science, 14(5), 455-61. https://doi.org/10.1111/1467-9280.02453

Todd, S., Barr, S., Roberts, M., & Passmore, A. P. (2013). Survival in dementia and predictors of mortality: a review. International Journal of Geriatric Psychiatry, 28(11), 1109-1124. https://doi.org/10.1002/gps.3946

U.S. Department of Health and Human Services, National Institutes of Health, National Institute of Aging. (Updated 2021). What Causes Alzheimer’s Disease? Retrieved from https://www.nia.nih.gov/health/what-causes-alzheimers-disease

White, N. M., & McDonald, R. J. (2002). Multiple parallel memory systems in the brain of the rat. Neurobiology of Learning and Memory, 77(2), 125-184. https://doi.org/10.1006/nlme.2001.4008

Yeo-Teh, N. S. L., & Tang, B. L. (2023). A Review of Scientific Ethics Issues Associated with the Recently Approved Drugs for Alzheimer's Disease. Science and Engineering Ethics, 29(1):2. https://doi.org/10.1007/s11948-022-00422-0

18.2 Implicit Memories: Associative vs. Nonassociative Learning

Izquierdo, I., Furini, C. R., & Myskiw, J. C. (2016). Fear Memory. Physiological Reviews, 96(2), 695-750. https://doi.org/10.1152/physrev.00018.2015

Liu, X., Ramirez, S., Pang, P. T., Puryear, C. B., Govindarajan, A., Deisseroth, K., & Tonegawa, S. (2012). Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature, 484(7394), 381-385. https://doi.org/10.1038/nature11028

McCormick, D. A., & Thompson, R. F. (1984). Cerebellum: essential involvement in the classically conditioned eyelid response. Science, 223(4633), 296-299. https://doi.org/10.1126/science.6701513

Rudy, J. W. (2008). The neurobiology of learning and memory. Sinauer Associates, Sunderland, Massachusetts.

Staddon, J. E., & Cerutti, D. T. (2003). Operant conditioning. Annual Review of Psychology, 54, 115-144. https://doi.org/10.1146/annurev.psych.54.101601.145124

VanElzakker, M. B., Dahlgren, M. K., Davis, F. C., Dubois, S., & Shin, L. M. (2014). From Pavlov to PTSD: the extinction of conditioned fear in rodents, humans, and anxiety disorders. Neurobiology of Learning and Memory, 113, 3-18. https://doi.org/10.1016/j.nlm.2013.11.014

18.3 Explicit Memories: Episodic and Semantic Memories

Buzsaki, G. (2002). Theta oscillations in the hippocampus. Neuron, 33(3), 325-340.

Buzsáki, G., & Tingley, D. (2018). Space and Time: The Hippocampus as a Sequence Generator. Trends in Cognitive Sciences, 22(10), 853-869. https://doi.org/10.1016/j.tics.2018.07.006

Chettih, S. N., Mackevicius, E. L., Hale, S., Aronov, D. (2023). Barcoding of episodic memories in the hippocampus of a food-caching bird. bioRxiv [Preprint]. https://doi.org/10.1101/2023.05.27.542597

Clayton, N., & Dickinson, A. (1998). Episodic-like memory during cache recovery by scrub jays. Nature, 395, 272–274. https://doi.org/10.1038/26216

Devito, L. M., & Eichenbaum, H. (2011). Memory for the order of events in specific sequences: contributions of the hippocampus and medial prefrontal cortex. Journal of Neuroscience, 31(9), 3169-3175. https://doi.org/10.1523/JNEUROSCI.4202-10.2011

Ekstrom, A., Kahana, M., Caplan, J., et al. (2003). Cellular networks underlying human spatial navigation. Nature, 425, 184–188. https://doi.org/10.1038/nature01964

Eichenbaum, H., Otto, T., & Cohen, N. J. (1992). The hippocampus—what does it do? Behavioral Neural Biology, 57(1), 2-36. https://doi.org/10.1016/0163-1047(92)90724-i

Fortin, N. J., Agster, K. L., & Eichenbaum, H. B. (2002). Critical role of the hippocampus in memory for sequences of events. Nature Neuroscience, 5(5), 458-462. https://doi.org/10.1038/nn834

Hafting, T., Fyhn, M., Molden, S., Moser, M. B., & Moser, E. I. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436(7052), 801-806. https://doi.org/10.1038/nature03721

Kesner, R. P., Gilbert, P. E., & Barua, L. A. (2002). The role of the hippocampus in memory for the temporal order of a sequence of odors. Behavioral Neuroscience, 116(2), 286-290. https://doi.org/10.1037//0735-7044.116.2.286

Kropff, E., Carmichael, J. E., Moser, M. B., & Moser, E. I. (2015). Speed cells in the medial entorhinal cortex. Nature, 523(7561), 419-424. https://doi.org/10.1038/nature14622

Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S., & Frith, C. D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences of the USA, 97(8), 4398-4403. https://doi.org/10.1073/pnas.070039597

O'Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34(1), 171-175. https://doi.org/10.1016/0006-8993(71)90358-1

O’Keefe, J. (2014). Nobel Lecture: Spatial cells in the hippocampal formation. https://www.nobelprize.org/uploads/2018/06/okeefe-lecture.pdf

Solstad, T., Boccara, C. N., Kropff, E., Moser, M. B., & Moser, E. I. (2008). Representation of geometric borders in the entorhinal cortex. Science, 322(5909), 1865-1868. https://doi.org/10.1126/science.1166466

Taube, J. S., Muller, R. U., & Ranck, J. B., Jr. (1990). Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations. Journal of Neuroscience, 10(2), 436-447.

Tulving, E. (1987). Multiple memory systems and consciousness. Human Neurobiology, 6(2), 67-80.

Zola-Morgan, S., Squire, L. R., & Amaral, D. G. (1986). Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. Journal of Neuroscience, 6(10), 2950-2967.

18.4 Synaptic Mechanisms of Long-Term Memory

Anderson, P. (2007). The Hippocampus Book. Oxford University Press.

Bliss, T. V., & Gardner-Medwin, A. R. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anesthetized rabbit following stimulation of the perforant path. Journal of Physiology, 232(2), 357-374. https://doi.org/10.1113/jphysiol.1973.sp010274

Bliss, T. V., & Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anesthetized rabbit following stimulation of the perforant path. Journal of Physiology, 232(2), 331-356. https://doi.org/10.1113/jphysiol.1973.sp010273

Collingridge, G. L., Kehl, S. J., & McLennan, H. (1983). The antagonism of amino acid-induced excitations of rat hippocampal CA1 neurones in vitro. Journal of Physiology, 334, 19-31. https://doi.org/10.1113/jphysiol.1983.sp014477

Davis, S., Butcher, S. P., & Morris, R. G. (1992). The NMDA receptor antagonist D-2-amino-5-phosphonopentanoate (D-AP5) impairs spatial learning and LTP in vivo at intracerebral concentrations comparable to those that block LTP in vitro. Journal of Neuroscience, 12(1), 21-34. https://doi.org/10.1523/JNEUROSCI.12-01-00021.1992

Douglas, R. M., & Goddard, G. V. (1975). Long-term potentiation of the perforant path-granule cell synapse in the rat hippocampus. Brain Research, 86(2), 205-215. https://doi.org/10.1016/0006-8993(75)90697-6

Engert, F., & Bonhoeffer, T. (1999). Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature, 399(6731), 66-70. https://doi.org/10.1038/19978

Frey, U., Krug, M., Reymann, K. G., & Matthies, H. (1988). Anisomycin, an inhibitor of protein synthesis, blocks late phases of LTP phenomena in the hippocampal CA1 region in vitro. Brain Research, 452(1-2), 57-65. https://doi.org/10.1016/0006-8993(88)90008-x

Hebb, D.O. (1949). The Organization of Behavior: A Neuropsychological Theory. New York, NY: John Wiley & Sons.

Kauer, J. A., Malenka, R. C., & Nicoll, R. A. (1988). A persistent postsynaptic modification mediates long-term potentiation in the hippocampus. Neuron, 1(10), 911-917. https://doi.org/10.1016/0896-6273(88)90148-1

Liao, D., Hessler, N. A., & Malinow, R. (1995). Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature, 375(6530), 400-404. https://doi.org/10.1038/375400a0

Mayer, M. L., Westbrook, G. L., & Guthrie, P. B. (1984). Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature, 309(5965), 261-263. https://doi.org/10.1038/309261a0

Nicholls, R. E., Alarcon, J. M., Malleret, G., Carroll, R. C., Grody, M., Vronskaya, S., & Kandel, E. R. (2008). Transgenic mice lacking NMDAR-dependent LTD exhibit deficits in behavioral flexibility. Neuron, 58(1), 104-17. https://doi.org/10.1016/j.neuron.2008.01.039

Nowak, L., Bregestovski, P., Ascher, P., Herbet, A., & Prochiantz, A. (1984). Magnesium gates glutamate-activated channels in mouse central neurones. Nature, 307(5950), 462-465. https://doi.org/10.1038/307462a0

Shi, S. H., Hayashi, Y., Petralia, R. S., Zaman, S. H., Wenthold, R. J., Svoboda, K., & Malinow, R. (1999). Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science, 284(5421), 1811-1816. https://doi.org/10.1126/science.284.5421.1811

Tang, Y. P., Shimizu, E., Dube, G. R., Rampon, C., Kerchner, G. A., Zhuo, M., Liu, G., & Tsien, J. Z. (1999). Genetic enhancement of learning and memory in mice. Nature, 401(6748), 63-9. https://doi.org/10.1038/43432

Wang, D., Cui, Z., Zeng, Q., Kuang, H., Wang, L. P., Tsien, J. Z., & Cao, X. (2009). Genetic enhancement of memory and long-term potentiation but not CA1 long-term depression in NR2B transgenic rats. PLoS One, 4(10):e7486. https://doi.org/10.1371/journal.pone.0007486

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution-NonCommercial-ShareAlike License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/introduction-behavioral-neuroscience/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/introduction-behavioral-neuroscience/pages/1-introduction
Citation information

© Nov 20, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.