15.1 What Are Circadian Rhythms?
Binkley, S., & Mosher, K. (1987). Circadian rhythm resetting in sparrows: Early response to doublet light pulses. Journal of Biological Rhythms, 2(1), 1–11. https://doi.org/10.1177/074873048700200101
Danner, F., & Phillips, B. (2008). Adolescent sleep, school start times, and teen motor vehicle crashes. Journal of Clinical Sleep Medicine: JCSM: Official Publication of the American Academy of Sleep Medicine, 4(6), 533–535.
De Coursey, P. J. (1960). Daily light sensitivity rhythm in a rodent. Science (New York, N.Y.), 131(3392), 33–35. https://doi.org/10.1126/science.131.3392.33
Dunlap, J. C., Loros, J. J., & DeCoursey, P. J. (2004). Chronobiology: Biological timekeeping. Sunderland, MA: Sinauer Associates.
Dunster, G. P., de la Iglesia, L., Ben-Hamo, M., Nave, C., Fleischer, J. G., Panda, S., & de la Iglesia, H. O. (2018). Sleepmore in Seattle: Later school start times are associated with more sleep and better performance in high school students. Science Advances, 4(12), eaau6200. https://doi.org/10.1126/sciadv.aau6200
Facer-Childs, E. R., Middleton, B., Skene, D. J., & Bagshaw, A. P. (2019). Resetting the late timing of 'night owls' has a positive impact on mental health and performance. Sleep Medicine, 60, 236–247. https://doi.org/10.1016/j.sleep.2019.05.001
Fischer, D., Lombardi, D. A., Marucci-Wellman, H., & Roenneberg, T. (2017). Chronotypes in the US - Influence of age and sex. PloS One, 12(6), e0178782. https://doi.org/10.1371/journal.pone.0178782
National Sleep Foundation. (2014). 2014 Sleep in America (R) Poll: Sleep in the modern family (pp. 1–51). Arlington, VA: National Sleep Foundation.
Sawyer, H., & Taie, W. S. (2020). Start time for U.S. public high schools. National Center for Educational Statistics, pub. 2020006.
van der Merwe, C., Münch, M., & Kruger, R. (2022). Chronotype differences in body composition, dietary intake and eating behavior outcomes: A scoping systematic review. Advances in Nutrition (Bethesda, Md.), 13(6), 2357–2405. https://doi.org/10.1093/advances/nmac093
Vinayak, P., Coupar, J., Hughes, S. E., Fozdar, P., Kilby, J., Garren, E., Yoshii, T., & Hirsh, J. (2013). Exquisite light sensitivity of Drosophila melanogaster cryptochrome. PloS Genetics, 9(7), e1003615. https://doi.org/10.1371/journal.pgen.1003615
Walsh, N. A., Repa, L. M., & Garland, S. N. (2022). Mindful larks and lonely owls: The relationship between chronotype, mental health, sleep quality, and social support in young adults. Journal of Sleep Research, 31(1), e13442. https://doi.org/10.1111/jsr.13442
Yeo, S. C., Yabuki, H., Charoenthammanon, R. S., & Gooley, J. J. (2023). University students' diurnal learning-directed behavior is strongly influenced by school start times with implications for grades. Sleep, 46(7), zsad141. https://doi.org/10.1093/sleep/zsad141
15.2 Where Are Rhythms in the Brain?
Allada, R., & Chung, B. Y. (2010). Circadian organization of behavior and physiology in Drosophila. Annual Review of Physiology, 72, 605–624. https://doi.org/10.1146/annurev-physiol-021909-135815
Aranda-Martínez, P., Fernández-Martínez, J., Ramírez-Casas, Y., Guerra-Librero, A., Rodríguez-Santana, C., Escames, G., & Acuña-Castroviejo, D. (2022). The zebrafish, an outstanding model for biomedical research in the field of melatonin and human diseases. International Journal of Molecular Sciences, 23(13), 7438. https://doi.org/10.3390/ijms23137438
Cassone, V. M. (2014). Avian circadian organization: A chorus of clocks. Frontiers in Neuroendocrinology, 35(1), 76–88. https://doi.org/10.1016/j.yfrne.2013.10.002
Cassone, V. M., & Menaker, M. (1984). Is the avian circadian system a neuroendocrine loop?. The Journal of Experimental Zoology, 232(3), 539–549. https://doi.org/10.1002/jez.1402320321
Falcón, J., Besseau, L., Fuentès, M., Sauzet, S., Magnanou, E., & Boeuf, G. (2009). Structural and functional evolution of the pineal melatonin system in vertebrates. Annals of the New York Academy of Sciences, 1163, 101–111. https://doi.org/10.1111/j.1749-6632.2009.04435.x
Green, D. J., & Gillette, R. (1982). Circadian rhythm of firing rate recorded from single cells in the rat suprachiasmatic brain slice. Brain Research, 245(1), 198–200. https://doi.org/10.1016/0006-8993(82)90361-4
Loudon, A. S. (2012). Circadian biology: A 2.5 billion year old clock. Current Biology: CB, 22(14), R570–R571. https://doi.org/10.1016/j.cub.2012.06.023
Menaker, M., Moreira, L. F., & Tosini, G. (1997). Evolution of circadian organization in vertebrates. Brazilian Journal of Medical and Biological Research = Revista Brasileira de Pesquisas Medicas e Biologicas, 30(3), 305–313. https://doi.org/10.1590/s0100-879x1997000300003
Newman, G. C., & Hospod, F. E. (1986). Rhythm of suprachiasmatic nucleus 2-deoxyglucose uptake in vitro. Brain Research, 381(2), 345–350. https://doi.org/10.1016/0006-8993(86)90086-7
Olcese, J. M. (2020). Melatonin and female reproduction: An expanding universe. Frontiers in Endocrinology, 11, 85. https://doi.org/10.3389/fendo.2020.00085
Phillips, N. H., & Berger, R. J. (1992). Melatonin infusions restore sleep suppressed by continuous bright light in pigeons. Neuroscience Letters, 145(2), 217–220. https://doi.org/10.1016/0304-3940(92)90026-4
Ralph, M. R., Foster, R. G., Davis, F. C., & Menaker, M. (1990). Transplanted suprachiasmatic nucleus determines circadian period. Science (New York, N.Y.), 247(4945), 975–978. https://doi.org/10.1126/science.2305266
Silvani, M. I., Werder, R., & Perret, C. (2022). The influence of blue light on sleep, performance and wellbeing in young adults: A systematic review. Frontiers in Physiology, 13, 943108. https://doi.org/10.3389/fphys.2022.943108
Silver, R., LeSauter, J., Tresco, P. A., & Lehman, M. N. (1996). A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature, 382(6594), 810–813. https://doi.org/10.1038/382810a0
Tosini, G., Bertolucci, C., & Foà, A. (2001). The circadian system of reptiles: A multioscillatory and multiphotoreceptive system. Physiology & Behavior, 72(4), 461–471. https://doi.org/10.1016/s0031-9384(00)00423-6
15.3 Regulation of Sleep
Albrecht, U., & Ripperger, J. A. (2018). Circadian clocks and sleep: Impact of rhythmic metabolism and waste clearance on the brain. Trends in Neurosciences, 41(10), 677–688. https://doi.org/10.1016/j.tins.2018.07.007
Baker, F. C., & Driver, H. S. (2007). Circadian rhythms, sleep, and the menstrual cycle. Sleep Medicine, 8(6), 613–622. https://doi.org/10.1016/j.sleep.2006.09.011
Baker, F. C., de Zambotti, M., Colrain, I. M., & Bei, B. (2018). Sleep problems during the menopausal transition: Prevalence, impact, and management challenges. Nature and Science of Sleep, 10, 73–95. https://doi.org/10.2147/NSS.S125807
Barrett-Connor, E., Dam, T. T., Stone, K., Harrison, S. L., Redline, S., Orwoll, E., & Osteoporotic Fractures in Men Study Group (2008). The association of testosterone levels with overall sleep quality, sleep architecture, and sleep-disordered breathing. The Journal of Clinical Endocrinology and Metabolism, 93(7), 2602–2609. https://doi.org/10.1210/jc.2007-2622
Bei, B., Coo, S., Baker, F. C., & Trinder, J. (2015). Sleep in women: A review. Australian Psychologist, 50, 14–24.
Burdick, R. S., Hoffmann, R., & Armitage, R. (2002). Short note: Oral contraceptives and sleep in depressed and healthy women. Sleep, 25(3), 347–349.
Hablitz, L. M., Plá, V., Giannetto, M., Vinitsky, H. S., Stæger, F. F., Metcalfe, T., Nguyen, R., Benrais, A., & Nedergaard, M. (2020). Circadian control of brain glymphatic and lymphatic fluid flow. Nature Communications, 11(1), 4411. https://doi.org/10.1038/s41467-020-18115-2
Jessen, N. A., Munk, A. S., Lundgaard, I., & Nedergaard, M. (2015). The glymphatic system: A beginner's guide. Neurochemical Research, 40(12), 2583–2599. https://doi.org/10.1007/s11064-015-1581-6
Kanaya, H. J., Park, S., Kim, J. H., Kusumi, J., Krenenou, S., Sawatari, E., Sato, A., Lee, J., Bang, H., Kobayakawa, Y., Lim, C., & Itoh, T. Q. (2020). A sleep-like state in Hydra unravels conserved sleep mechanisms during the evolutionary development of the central nervous system. Science Advances, 6(41), eabb9415. https://doi.org/10.1126/sciadv.abb9415
Khazaie, H., Ghadami, M. R., Knight, D. C., Emamian, F., & Tahmasian, M. (2013). Insomnia treatment in the third trimester of pregnancy reduces postpartum depression symptoms: A randomized clinical trial. Psychiatry Research, 210(3), 901–905. https://doi.org/10.1016/j.psychres.2013.08.017
Liu, P. Y., Yee, B., Wishart, S. M., Jimenez, M., Jung, D. G., Grunstein, R. R., & Handelsman, D. J. (2003). The short-term effects of high-dose testosterone on sleep, breathing, and function in older men. The Journal of Clinical Endocrinology and Metabolism, 88(8), 3605–3613. https://doi.org/10.1210/jc.2003-030236
Lovatt, D., Xu, Q., Liu, W., Takano, T., Smith, N. A., Schnermann, J., Tieu, K., & Nedergaard, M. (2012). Neuronal adenosine release, and not astrocytic ATP release, mediates feedback inhibition of excitatory activity. Proceedings of the National Academy of Sciences of the United States of America, 109(16), 6265–6270. https://doi.org/10.1073/pnas.1120997109
Mallampalli, M. P., & Carter, C. L. (2014). Exploring sex and gender differences in sleep health: A Society for Women's Health Research Report. Journal of Women's Health (2002), 23(7), 553–562. https://doi.org/10.1089/jwh.2014.4816
Mong, J. A., & Cusmano, D. M. (2016). Sex differences in sleep: Impact of biological sex and sex steroids. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 371(1688), 20150110. https://doi.org/10.1098/rstb.2015.0110
Rezaie, L., Fobian, A. D., McCall, W. V., & Khazaie, H. (2018). Paradoxical insomnia and subjective-objective sleep discrepancy: A review. Sleep Medicine Reviews, 40, 196–202. https://doi.org/10.1016/j.smrv.2018.01.002
Salari, N., Darvishi, N., Khaledi-Paveh, B., Vaisi-Raygani, A., Jalali, R., Daneshkhah, A., Bartina, Y., & Mohammadi, M. (2021). A systematic review and meta-analysis of prevalence of insomnia in the third trimester of pregnancy. BMC Pregnancy and Childbirth, 21(1), 284. https://doi.org/10.1186/s12884-021-03755-z
Saper, C. B., Chou, T. C., & Scammell, T. E. (2001). The sleep switch: Hypothalamic control of sleep and wakefulness. Trends in Neurosciences, 24(12), 726–731. https://doi.org/10.1016/s0166-2236(00)02002-6
Sateia, M. J., Doghramji, K., Hauri, P. J., & Morin, C. M. (2000). Evaluation of chronic insomnia. An American Academy of Sleep Medicine review. Sleep, 23(2), 243–308.
Sharma, S., & Kavuru, M. (2010). Sleep and metabolism: An overview. International Journal of Endocrinology, 2010, 270832. https://doi.org/10.1155/2010/270832
Siegel, J. M. (2022). Sleep function: An evolutionary perspective. The Lancet. Neurology, 21(10), 937–946. https://doi.org/10.1016/S1474-4422(22)00210-1
Siegel, J. M. (2005). Clues to the functions of mammalian sleep. Nature, 437(7063), 1264–1271. https://doi.org/10.1038/nature04285
Voirin, B., Scriba, M. F., Martinez-Gonzalez, D., Vyssotski, A. L., Wikelski, M., & Rattenborg, N. C. (2014). Ecology and neurophysiology of sleep in two wild sloth species. Sleep, 37(4), 753–761. https://doi.org/10.5665/sleep.3584
Walker, M. P. (2017). Why we sleep: Unlocking the power of sleep and dreams. First Scribner hardcover edition. New York: Scribner, an imprint of Simon & Schuster, Inc.
15.4 Disorders of Sleep and Circadian Rhythms
Baker, F. C., de Zambotti, M., Colrain, I. M., & Bei, B. (2018). Sleep problems during the menopausal transition: Prevalence, impact, and management challenges. Nature and Science of Sleep, 10, 73–95. https://doi.org/10.2147/NSS.S125807
Ju, Y. S., Videnovic, A., & Vaughn, B. V. (2017). Comorbid sleep disturbances in neurologic disorders. Continuum (Minneapolis, Minn.), 23(4, Sleep Neurology), 1117–1131. https://doi.org/10.1212/CON.0000000000000501
Medic, G., Wille, M., & Hemels, M. E. (2017). Short- and long-term health consequences of sleep disruption. Nature and Science of Sleep, 9, 151–161. https://doi.org/10.2147/NSS.S134864
Meyer, N., Harvey, A. G., Lockley, S. W., & Dijk, D. J. (2022). Circadian rhythms and disorders of the timing of sleep. Lancet (London, England), 400(10357), 1061–1078. https://doi.org/10.1016/S0140-6736(22)00877-7
Micic, G., Lovato, N., Gradisar, M., Ferguson, S. A., Burgess, H. J., & Lack, L. C. (2016). The etiology of delayed sleep phase disorder. Sleep Medicine Reviews, 27, 29–38. https://doi.org/10.1016/j.smrv.2015.06.004
15.5 Circadian Rhythms and Society
Akerstedt, T., Fredlund, P., Gillberg, M., & Jansson, B. (2002). A prospective study of fatal occupational accidents—relationship to sleeping difficulties and occupational factors. Journal of Sleep Research, 11(1), 69–71. https://doi.org/10.1046/j.1365-2869.2002.00287.x
Barnes, C. M., & Wagner, D. T. (2009). Changing to daylight saving time cuts into sleep and increases workplace injuries. The Journal of Applied Psychology, 94(5), 1305–1317. https://doi.org/10.1037/a0015320
Boivin, D. B., Boudreau, P., & Kosmadopoulos, A. (2022). Disturbance of the circadian system in shift work and its health impact. Journal of Biological Rhythms, 37(1), 3–28. https://doi.org/10.1177/07487304211064218
Brooks, A., & Lack, L. (2006). A brief afternoon nap following nocturnal sleep restriction: Which nap duration is most recuperative?. Sleep, 29(6), 831–840. https://doi.org/10.1093/sleep/29.6.831
Castilhos Beauvalet, J., Luísa Quiles, C., Alves Braga De Oliveira, M., Vieira Ilgenfritz, C. A., Hidalgo, M. P., & Comiran Tonon, A. (2017). Social jetlag in health and behavioral research: A systematic review. ChronoPhysiology and Therapy, 7, 19–31.
Choueiry, N., Salamoun, T., Jabbour, H., El Osta, N., Hajj, A., & Rabbaa Khabbaz, L. (2016). Insomnia and relationship with anxiety in university students: A cross-sectional designed study. PloS One, 11(2), e0149643. https://doi.org/10.1371/journal.pone.0149643
Drake, C., Roehrs, T., Shambroom, J., & Roth, T. (2013). Caffeine effects on sleep taken 0, 3, or 6 hours before going to bed. Journal of Clinical Sleep Medicine: JCSM: Official Publication of the American Academy of Sleep Medicine, 9(11), 1195–1200. https://doi.org/10.5664/jcsm.3170
Dutheil, F., Danini, B., Bagheri, R., Fantini, M. L., Pereira, B., Moustafa, F., Trousselard, M., & Navel, V. (2021). Effects of a short daytime nap on cognitive performance: A systematic review and meta-analysis. International Journal of Environmental Research and Public Health, 18(19), 10212. https://doi.org/10.3390/ijerph181910212
Fritz, J., VoPham, T., Wright, K. P., Jr., & Vetter, C. (2020). A chronobiological evaluation of the acute effects of daylight saving time on traffic accident risk. Current Biology: CB, 30(4), 729–735.e2. https://doi.org/10.1016/j.cub.2019.12.045
Harrison, Y. (2013). The impact of daylight saving time on sleep and related behaviours. Sleep Medicine Reviews, 17(4), 285–292. https://doi.org/10.1016/j.smrv.2012.10.001
Hayashi, M., Watanabe, M., & Hori, T. (1999). The effects of a 20 min nap in the mid-afternoon on mood, performance and EEG activity. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 110(2), 272–279. https://doi.org/10.1016/s1388-2457(98)00003-0
Hershner, S. D., & Chervin, R. D. (2014). Causes and consequences of sleepiness among college students. Nature and Science of Sleep, 6, 73–84. https://doi.org/10.2147/NSS.S62907
Horne, J. A., & Reyner, L. A. (1996). Counteracting driver sleepiness: Effects of napping, caffeine, and placebo. Psychophysiology, 33(3), 306–309. https://doi.org/10.1111/j.1469-8986.1996.tb00428.x
James, S. M., Honn, K. A., Gaddameedhi, S., & Van Dongen, H. P. A. (2017). Shift work: Disrupted circadian rhythms and sleep-implications for health and well-being. Current Sleep Medicine Reports, 3(2), 104–112. https://doi.org/10.1007/s40675-017-0071-6
Jarjour, N. N., Lacouture, P. G., & Busse, W. W. (1998). Theophylline inhibits the late asthmatic response to nighttime antigen challenge in patients with mild atopic asthma. Annals of Allergy, Asthma & Immunology: Official Publication of the American College of Allergy, Asthma, & Immunology, 81(3), 231–236. https://doi.org/10.1016/S1081-1206(10)62817-7
Kelly, W. E., Kelly, K. E., & Clanton, R. C. (2001). The relationship between sleep length and grade-point average among college students. College Student Journal, 35(1), 84–86.
Kettner, N. M., Mayo, S. A., Hua, J., Lee, C., Moore, D. D., & Fu, L. (2015). Circadian dysfunction induces leptin resistance in mice. Cell Metabolism, 22(3), 448–459. https://doi.org/10.1016/j.cmet.2015.06.005
Leong, R. L. F., Lau, T., Dicom, A. R., Teo, T. B., Ong, J. L., & Chee, M. W. L. (2023). Influence of mid-afternoon nap duration and sleep parameters on memory encoding, mood, processing speed, and vigilance. Sleep, 46(4), zsad025. https://doi.org/10.1093/sleep/zsad025
Lévi, F. A., Zidani, R., Vannetzel, J. M., Perpoint, B., Focan, C., Faggiuolo, R., Chollet, P., Garufi, C., Itzhaki, M., & Dogliotti, L. (1994). Chronomodulated versus fixed-infusion-rate delivery of ambulatory chemotherapy with oxaliplatin, fluorouracil, and folinic acid (leucovorin) in patients with colorectal cancer metastases: A randomized multi-institutional trial. Journal of the National Cancer Institute, 86(21), 1608–1617. https://doi.org/10.1093/jnci/86.21.1608
Litinski, M., Scheer, F. A., & Shea, S. A. (2009). Influence of the circadian system on disease severity. Sleep Medicine Clinics, 4(2), 143–163. https://doi.org/10.1016/j.jsmc.2009.02.005
Malow, B. A., Veatch, O. J., & Bagai, K. (2020). Are daylight saving time changes bad for the brain?. JAMA Neurology, 77(1), 9–10. https://doi.org/10.1001/jamaneurol.2019.3780
Manfredini, R., Fabbian, F., Cappadona, R., De Giorgi, A., Bravi, F., Carradori, T., Flacco, M. E., & Manzoli, L. (2019). Daylight saving time and acute myocardial infarction: A meta-analysis. Journal of Clinical Medicine, 8(3), 404. https://doi.org/10.3390/jcm8030404
Mantua, J., & Spencer, R. M. C. (2017). Exploring the nap paradox: Are mid-day sleep bouts a friend or foe?. Sleep Medicine, 37, 88–97. https://doi.org/10.1016/j.sleep.2017.01.019
Nishino, S., Ripley, B., Overeem, S., Lammers, G. J., & Mignot, E. (2000). Hypocretin (orexin) deficiency in human narcolepsy. Lancet (London, England), 355(9197), 39–40. https://doi.org/10.1016/S0140-6736(99)05582-8
Peyron, C., Faraco, J., Rogers, W., Ripley, B., Overeem, S., Charnay, Y., Nevsimalova, S., Aldrich, M., Reynolds, D., Albin, R., Li, R., Hungs, M., Pedrazzoli, M., Padigaru, M., Kucherlapati, M., Fan, J., Maki, R., Lammers, G. J., Bouras, C., Kucherlapati, R., … Mignot, E. (2000). A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nature Medicine, 6(9), 991–997. https://doi.org/10.1038/79690
Sawyer, H., & Taie, W. S. (2020). Start time for U.S. public high schools. NCES 2020006 Edition. https://nces.ed.gov/pubs2020/2020006/index.asp
Sipilä, J. O., Ruuskanen, J. O., Rautava, P., & Kytö, V. (2016). Changes in ischemic stroke occurrence following daylight saving time transitions. Sleep Medicine, 27-28, 20–24. https://doi.org/10.1016/j.sleep.2016.10.009
Song, J. U., Park, H. K., & Lee, J. (2018). Impact of dosage timing of once-daily inhaled corticosteroids in asthma: A systematic review and meta-analysis. Annals of Allergy, Asthma & Immunology: Official Publication of the American College of Allergy, Asthma, & Immunology, 120(5), 512–519. https://doi.org/10.1016/j.anai.2017.12.021
Tisdale, R. K., Yamanaka, A., & Kilduff, T. S. (2021). Animal models of narcolepsy and the hypocretin/orexin system: Past, present, and future. Sleep, 44(6), zsaa278. https://doi.org/10.1093/sleep/zsaa278
Trockel, M. T., Barnes, M. D., & Egget, D. L. (2000). Health-related variables and academic performance among first-year college students: Implications for sleep and other behaviors. Journal of American College Health: J of ACH, 49(3), 125–131. https://doi.org/10.1080/07448480009596294
Turner-Warwick, M. (1988). Epidemiology of nocturnal asthma. The American Journal of Medicine, 85(1B), 6–8. https://doi.org/10.1016/0002-9343(88)90231-8
Wagstaff, A. S., & Sigstad Lie, J. A. (2011). Shift and night work and long working hours—a systematic review of safety implications. Scandinavian Journal of Work, Environment & Health, 37(3), 173–185. https://doi.org/10.5271/sjweh.3146
Zhang, H., Dahlén, T., Khan, A., Edgren, G., & Rzhetsky, A. (2020). Measurable health effects associated with the daylight saving time shift. PloS Computational Biology, 16(6), e1007927. https://doi.org/10.1371/journal.pcbi.1007927