Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo

13.1 Foundational and Contemporary Theories of Emotion

Arnold, M. B. (1960). Emotion and personality. New York: Columbia University Press.

Bermond, B., Nieuwenhuyse, B., Fasotti, L., & Schuerman, J. (1991). Spinal cord lesions, peripheral feedback, and intensities of emotional feelings. Cognition and Emotion, 5, 201–220.

Bosch, J. A., de Geus, E. J., Kelder, A., Veerman, E. C., Hoogstraten, J., & Amerongen, A. V. (2001). Differential effects of active versus passive coping on secretory immunity. Psychophysiology, 38(5), 836–846.

James, W. (1884). What is an emotion? Mind, 9, 188–205.

Kreibig, S. D., Wilhelm, F. H., Roth, W. T., & Gross, J. J. (2007). Cardiovascular, electrodermal, and respiratory response patterns to fear- and sadness-inducing films. Psychophysiology, 44(5), 787–806. https://doi.org/10.1111/j.1469-8986.2007.00550.x

Lazarus, R. S. (1991). Emotion and adaptation. New York, NY: Oxford University Press.

Reisenzein, R. (1983). The Schachter theory of emotion: Two decades later. Psychological Bulletin, 94(2), 239–264.

Ritz, T., Thöns, M., Fahrenkrug, S., & Dahme, B. (2005). Airways, respiration, and respiratory sinus arrhythmia during picture viewing. Psychophysiology, 42(5), 568–578. https://doi.org/10.1111/j.1469-8986.2005.00312.x

Schachter, S., & Singer, J. E. (1962). Cognitive, social, and physiological determinants of emotional state. Psychological Review, 69, 379–399. https://doi.org/10.1037/h0046234

Stephens, C. L., Christie, I. C., & Friedman, B. H. (2010). Autonomic specificity of basic emotions: Evidence from pattern classification and cluster analysis. Biological Psychology, 84(3), 463–473. https://doi.org/10.1016/j.biopsycho.2010.03.014

13.2 What Category of Feelings Are Considered as the “Basic Emotions”?

Ekman, P. (2003). Emotions revealed: Recognizing faces and feelings to improve communication and emotional life. Times Books/Henry Holt and Co.

Ekman, P., & Cordaro, D. (2011). What is meant by calling emotions basic. Emotion Review, 3(4), 364–370.

Ekman, P., & Friesen, W. V. (1975). Unmasking the face: A guide to recognizing emotions from facial clues. Prentice-Hall.

Koerner, N., & Antony, M. M. (2010). Special series on disgust and phobic avoidance: A commentary. International Journal of Cognitive Therapy, 3(1), 52–63.

Levenson, R. W., Ekman, P., & Friesen, W. V. (1990). Voluntary facial action generates emotion-specific autonomic nervous system activity. Psychophysiology, 27(4), 363–384. https://doi.org/10.1111/j.1469-8986.1990.tb02330.x

Nummenmaa, L., Glerean, E., Hari, R., & Hietanen, J. K. (2014). Bodily maps of emotions. Proceedings of the National Academy of Sciences of the United States of America, 111(2), 646–651. https://doi.org/10.1073/pnas.1321664111

Plutchik, R. (1984). Emotions and imagery. Journal of Mental Imagery, 8(4), 105–111.

Plutchik, R. (1960). The multifactor-analytic theory of emotion. The Journal of Psychology: Interdisciplinary and Applied, 50, 153–171.

Saarimäki, H., Gotsopoulos, A., Jääskeläinen, I. P., Lampinen, J., Vuilleumier, P., Hari, R., Sams, M., & Nummenmaa, L. (2016). Discrete neural signatures of basic emotions. Cerebral Cortex (New York, N.Y.: 1991), 26(6), 2563–2573. https://doi.org/10.1093/cercor/bhv086

Uvnäs-Moberg, K. (1998). Oxytocin may mediate the benefits of positive social interaction and emotions. Psychoneuroendocrinology, 23(8), 819–835. https://doi.org/10.1016/s0306-4530(98)00056-0

13.3 What Is the Contribution of Brain Structures in Emotional States?

Adolphs, R., Tranel, D., Damasio, H., & Damasio, A. (1994). Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature, 372(6507), 669–672. https://doi.org/10.1038/372669a0

Barrett, L. F., & Satpute, A. B. (2019). Historical pitfalls and new directions in the neuroscience of emotion. Neuroscience Letters, 693, 9–18. https://doi.org/10.1016/j.neulet.2017.07.045

Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., & Deisseroth, K. (2005). Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscience, 8(9), 1263–1268. https://doi.org/10.1038/nn1525

Cardinale, E. M., Reber, J., O'Connell, K., Turkeltaub, P. E., Tranel, D., Buchanan, T. W., & Marsh, A. A. (2021). Bilateral amygdala damage linked to impaired ability to predict others' fear but preserved moral judgements about causing others fear. Proceedings. Biological Sciences, 288(1943), 20202651. https://doi.org/10.1098/rspb.2020.2651

Feinstein, J. S., Adolphs, R., Damasio, A., & Tranel, D. (2011). The human amygdala and the induction and experience of fear. Current Biology: CB, 21(1), 34–38. https://doi.org/10.1016/j.cub.2010.11.042

Feinstein, J. S., Buzza, C., Hurlemann, R., Follmer, R. L., Dahdaleh, N. S., Coryell, W. H., Welsh, M. J., Tranel, D., & Wemmie, J. A. (2013). Fear and panic in humans with bilateral amygdala damage. Nature Neuroscience, 16(3), 270–272. https://doi.org/10.1038/nn.3323

Hess, W. R. (1933). Der Schlaf. Klinische Wochenschrift, 12, 129–134.

Kaloupek, D. G., & Levis, D. J. (1983). Issues in the assessment of fear: Response concordance and prediction of avoidance behavior. Journal of Behavioral Assessment, 5, 239–260.

Klüver, H., & Bucy, P. C. (1938). An analysis of certain effects of bilateral temporal lobectomy in the rhesus monkey, with special reference to “psychic blindness”. Journal of Psychology, 5, 33–54.

Kwon, J. T., Nakajima, R., Kim, H. S., Jeong, Y., Augustine, G. J., & Han, J. H. (2014). Optogenetic activation of presynaptic inputs in lateral amygdala forms associative fear memory. Learning & Memory (Cold Spring Harbor, N.Y.), 21(11), 627–633. https://doi.org/10.1101/lm.035816.114

Lee, S. C., Amir, A., Haufler, D., & Pare, D. (2017). Differential recruitment of competing valence-related amygdala networks during anxiety. Neuron, 96(1), 81–88.e5. https://doi.org/10.1016/j.neuron.2017.09.002

MacLean, P. D. (1952). Some psychiatric implications of physiological studies on frontotemporal portion of limbic system (visceral brain). Electroencephalography and Clinical Neurophysiology, 4(4), 407–418. https://doi.org/10.1016/0013-4694(52)90073-4

Markowitsch, H. J., Calabrese, P., Würker, M., Durwen, H. F., Kessler, J., Babinsky, R., Brechtelsbauer, D., Heuser, L., & Gehlen, W. (1994). The amygdala's contribution to memory--a study on two patients with Urbach-Wiethe disease. Neuroreport, 5(11), 1349–1352.

Papez, J. W. (1937). A proposed mechanism of emotion. Archives of Neurology & Psychiatry, 38, 725–743.

Pitkänen, A., & Amaral, D. G. (1998). Organization of the intrinsic connections of the monkey amygdaloid complex: projections originating in the lateral nucleus. The Journal of Comparative Neurology, 398(3), 431–458. https://doi.org/10.1002/(sici)1096-9861(19980831)398:3<431::aid-cne9>3.0.co;2-0

Sah, P. (2017). Fear, anxiety, and the amygdala. Neuron, 96(1), 1–2. https://doi.org/10.1016/j.neuron.2017.09.013

Sangha, S., Diehl, M. M., Bergstrom, H. C., & Drew, M. R. (2020). Know safety, no fear. Neuroscience and Biobehavioral Reviews, 108, 218–230. https://doi.org/10.1016/j.neubiorev.2019.11.006

Staut, C. C., & Naidich, T. P. (1998). Urbach-Wiethe disease (Lipoid proteinosis). Pediatric Neurosurgery, 28(4), 212–214. https://doi.org/10.1159/000028653

Tranel, D., & Hyman, B. T. (1990). Neuropsychological correlates of bilateral amygdala damage. Archives of Neurology, 47(3), 349–355. https://doi.org/10.1001/archneur.1990.00530030131029

Tranel, D., Gullickson, G., Koch, M., & Adolphs, R. (2006). Altered experience of emotion following bilateral amygdala damage. Cognitive Neuropsychiatry, 11(3), 219–232. https://doi.org/10.1080/13546800444000281

13.4 Mood and Emotional Disorders Associated with Depression

Adolphs, R., Tranel, D., & Damasio, A. R. (2003). Dissociable neural systems for recognizing emotions. Brain and Cognition, 52(1), 61–69. https://doi.org/10.1016/s0278-2626(03)00009-5

Beer, J. S., John, O. P., Scabini, D., & Knight, R. T. (2006). Orbitofrontal cortex and social behavior: integrating self-monitoring and emotion-cognition interactions. Journal of Cognitive Neuroscience, 18(6), 871–879. https://doi.org/10.1162/jocn.2006.18.6.871

Dixon, M. L., Thiruchselvam, R., Todd, R., & Christoff, K. (2017). Emotion and the prefrontal cortex: An integrative review. Psychological Bulletin, 143(10), 1033–1081. https://doi.org/10.1037/bul0000096

Ellenbogen, J. M., Hurford, M. O., Liebeskind, D. S., Neimark, G. B., & Weiss, D. (2005). Ventromedial frontal lobe trauma. Neurology, 64(4), 757. https://doi.org/10.1212/wnl.64.4.757

Fitzgerald, P. B., Brown, T. L., Marston, N. A., Daskalakis, Z. J., De Castella, A., & Kulkarni, J. (2003). Transcranial magnetic stimulation in the treatment of depression: a double-blind, placebo-controlled trial. Archives of General Psychiatry, 60(10), 1002–1008. https://doi.org/10.1001/archpsyc.60.9.1002

Harnett, N. G., Ference, E. W., 3rd, Knight, A. J., & Knight, D. C. (2020). White matter microstructure varies with post-traumatic stress severity following medical trauma. Brain Imaging and Behavior, 14(4), 1012–1024. https://doi.org/10.1007/s11682-018-9995-9

Koenigs, M., Huey, E. D., Raymont, V., Cheon, B., Solomon, J., Wassermann, E. M., & Grafman, J. (2008). Focal brain damage protects against post-traumatic stress disorder in combat veterans. Nature Neuroscience, 11(2), 232–237. https://doi.org/10.1038/nn2032

Koenigs, M., Huey, E. D., Calamia, M., Raymont, V., Tranel, D., & Grafman, J. (2008). Distinct regions of prefrontal cortex mediate resistance and vulnerability to depression. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28(47), 12341–12348. https://doi.org/10.1523/JNEUROSCI.2324-08.2008

López-Muñoz, F., Alamo, C., Juckel, G., & Assion, H. J. (2007). Half a century of antidepressant drugs: on the clinical introduction of monoamine oxidase inhibitors, tricyclics, and tetracyclics. Part I: monoamine oxidase inhibitors. Journal of Clinical Psychopharmacology, 27(6), 555–559. https://doi.org/10.1097/jcp.0b013e3181bb617

Mayberg, H. S. (2009). Targeted electrode-based modulation of neural circuits for depression. The Journal of Clinical Investigation, 119(4), 717–725. https://doi.org/10.1172/JCI38454

Ongür, D., & Price, J. L. (2000). The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cerebral Cortex (New York, N.Y.: 1991), 10(3), 206–219. https://doi.org/10.1093/cercor/10.3.206

Penfield, W., & Faulk, M. E., Jr (1955). The insula; further observations on its function. Brain: A Journal of Neurology, 78(4), 445–470. https://doi.org/10.1093/brain/78.4.445

Phan, K. L., Fitzgerald, D. A., Nathan, P. J., Moore, G. J., Uhde, T. W., & Tancer, M. E. (2005). Neural substrates for voluntary suppression of negative affect: a functional magnetic resonance imaging study. Biological Psychiatry, 57(3), 210–219. https://doi.org/10.1016/j.biopsych.2004.10.030

Rangel, A., Camerer, C., & Montague, P. R. (2008). A framework for studying the neurobiology of value-based decision making. Nature Reviews Neuroscience, 9(7), 545–556. https://doi.org/10.1038/nrn2357

Sandler, M. (1990). Monoamine oxidase inhibitors in depression: history and mythology. Journal of Psychopharmacology (Oxford, England), 4(3), 136–139. https://doi.org/10.1177/026988119000400307

Underwood, E. (2013). Short-circuiting depression. Science (New York, N.Y.), 342(6158), 548–551. https://doi.org/10.1126/science.342.6158.548

Vogt, B. A. (2005). Pain and emotion interactions in subregions of the cingulate gyrus. Nature Reviews Neuroscience, 6(7), 533–544. https://doi.org/10.1038/nrn1704

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution-NonCommercial-ShareAlike License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/introduction-behavioral-neuroscience/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/introduction-behavioral-neuroscience/pages/1-introduction
Citation information

© Nov 20, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.