Omitir e ir al contenidoIr a la página de accesibilidadMenú de atajos de teclado
Logo de OpenStax
Introducción a la estadística empresarial

13.2 Comprobación de la importancia del coeficiente de correlación

Introducción a la estadística empresarial13.2 Comprobación de la importancia del coeficiente de correlación

Menú
Índice
  1. Prefacio
  2. 1 Muestreo y datos
    1. Introducción
    2. 1.1 Definiciones de estadística, probabilidad y términos clave
    3. 1.2 Datos, muestreo y variación de datos y muestreo
    4. 1.3 Niveles de medición
    5. 1.4 Diseño experimental y ética
    6. Términos clave
    7. Repaso del capítulo
    8. Tarea para la casa
    9. Referencias
    10. Soluciones
  3. 2 Estadística descriptiva
    1. Introducción
    2. 2.1 Datos mostrados
    3. 2.2 Medidas de la ubicación de los datos
    4. 2.3 Medidas del centro de los datos
    5. 2.4 Notación sigma y cálculo de la media aritmética
    6. 2.5 Media geométrica
    7. 2.6 Distorsión y media, mediana y moda
    8. 2.7 Medidas de la dispersión de los datos
    9. Términos clave
    10. Repaso del capítulo
    11. Repaso de fórmulas
    12. Práctica
    13. Tarea para la casa
    14. Resúmalo todo: tarea para la casa
    15. Referencias
    16. Soluciones
  4. 3 Temas de probabilidad
    1. Introducción
    2. 3.1 Terminología
    3. 3.2 Eventos mutuamente excluyentes e independientes
    4. 3.3 Dos reglas básicas de la probabilidad
    5. 3.4 Tablas de contingencia y árboles de probabilidad
    6. 3.5 Diagramas de Venn
    7. Términos clave
    8. Repaso del capítulo
    9. Repaso de fórmulas
    10. Práctica
    11. Uniéndolo todo: Práctica
    12. Tarea para la casa
    13. Resúmalo todo: tarea para la casa
    14. Referencias
    15. Soluciones
  5. 4 Variables aleatorias discretas
    1. Introducción
    2. 4.1 Distribución hipergeométrica
    3. 4.2 Distribución binomial
    4. 4.3 Distribución geométrica
    5. 4.4 Distribución de Poisson
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  6. 5 Variables aleatorias continuas
    1. Introducción
    2. 5.1 Propiedades de las funciones de densidad de probabilidad continuas
    3. 5.2 La distribución uniforme
    4. 5.3 La distribución exponencial
    5. Términos clave
    6. Repaso del capítulo
    7. Repaso de fórmulas
    8. Práctica
    9. Tarea para la casa
    10. Referencias
    11. Soluciones
  7. 6 La distribución normal
    1. Introducción
    2. 6.1 La distribución normal estándar
    3. 6.2 Uso de la distribución normal
    4. 6.3 Estimación de la binomial con la distribución normal
    5. Términos clave
    6. Repaso del capítulo
    7. Repaso de fórmulas
    8. Práctica
    9. Tarea para la casa
    10. Referencias
    11. Soluciones
  8. 7 El teorema del límite central
    1. Introducción
    2. 7.1 Teorema del límite central de las medias muestrales
    3. 7.2 Uso del teorema del límite central
    4. 7.3 Teorema del límite central de las proporciones
    5. 7.4 Factor de corrección de población finita
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  9. 8 Intervalos de confianza
    1. Introducción
    2. 8.1 Un intervalo de confianza para una desviación típica de la población, con un tamaño de muestra conocido o grande
    3. 8.2 Un intervalo de confianza para una desviación típica de población desconocida, caso de una muestra pequeña
    4. 8.3 Un intervalo de confianza para una proporción de población
    5. 8.4 Cálculo del tamaño de la muestra n: variables aleatorias continuas y binarias
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  10. 9 Pruebas de hipótesis con una muestra
    1. Introducción
    2. 9.1 Hipótesis nula y alternativa
    3. 9.2 Resultados y errores de tipo I y II
    4. 9.3 Distribución necesaria para la comprobación de la hipótesis
    5. 9.4 Ejemplos de pruebas de hipótesis completas
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  11. 10 Pruebas de hipótesis con dos muestras
    1. Introducción
    2. 10.1 Comparación de las medias de dos poblaciones independientes
    3. 10.2 Criterios de Cohen para efectos de tamaño pequeño, mediano y grande
    4. 10.3 Prueba de diferencias de medias: suponer varianzas de población iguales
    5. 10.4 Comparación de dos proporciones de población independientes
    6. 10.5 Dos medias poblacionales con desviaciones típicas conocidas
    7. 10.6 Muestras coincidentes o emparejadas
    8. Términos clave
    9. Repaso del capítulo
    10. Repaso de fórmulas
    11. Práctica
    12. Tarea para la casa
    13. Resúmalo todo: tarea para la casa
    14. Referencias
    15. Soluciones
  12. 11 La distribución chi-cuadrado
    1. Introducción
    2. 11.1 Datos sobre la distribución chi-cuadrado
    3. 11.2 Prueba de una sola varianza
    4. 11.3 Prueba de bondad de ajuste
    5. 11.4 Prueba de independencia
    6. 11.5 Prueba de homogeneidad
    7. 11.6 Comparación de las pruebas chi-cuadrado
    8. Términos clave
    9. Repaso del capítulo
    10. Repaso de fórmulas
    11. Práctica
    12. Tarea para la casa
    13. Resúmalo todo: tarea para la casa
    14. Referencias
    15. Soluciones
  13. 12 La distribución F y el anova de una vía
    1. Introducción
    2. 12.1 Prueba de dos varianzas
    3. 12.2 ANOVA de una vía
    4. 12.3 La distribución F y el cociente F
    5. 12.4 Datos sobre la distribución F
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  14. 13 Regresión lineal y correlación
    1. Introducción
    2. 13.1 El coeficiente de correlación r
    3. 13.2 Comprobación de la importancia del coeficiente de correlación
    4. 13.3 Ecuaciones lineales
    5. 13.4 La ecuación de regresión
    6. 13.5 Interpretación de los coeficientes de regresión: elasticidad y transformación logarítmica
    7. 13.6 Predicción con una ecuación de regresión
    8. 13.7 Cómo utilizar Microsoft Excel® para el análisis de regresión
    9. Términos clave
    10. Repaso del capítulo
    11. Práctica
    12. Soluciones
  15. A Cuadros estadísticos
  16. B Oraciones, símbolos y fórmulas matemáticas
  17. Índice

El coeficiente de correlación, r, nos indica la fuerza y la dirección de la relación lineal entre X1 y X2.

Los datos de la muestra se utilizan para calcular r, el coeficiente de correlación de la muestra. Si tuviéramos los datos de toda la población, podríamos hallar el coeficiente de correlación de la población. Pero como solo tenemos datos de la muestra, no podemos calcular el coeficiente de correlación de la población. El coeficiente de correlación de la muestra, r, es nuestra estimación del coeficiente de correlación de la población desconocido.

  • ρ = coeficiente de correlación de la población (desconocido)
  • r = coeficiente de correlación de la muestra (conocido; calculado a partir de los datos de la muestra)

La prueba de hipótesis nos permite decidir si el valor del coeficiente de correlación de la población ρ es “cercano a cero” o “significativamente diferente de cero”. Lo decidimos en función del coeficiente de correlación de la muestra r y del tamaño de la muestra n.

Si la prueba concluye que el coeficiente de correlación es significativamente diferente de cero, decimos que el coeficiente de correlación es "significativo".

  • Conclusión: Hay pruebas suficientes para concluir que existe una relación lineal significativa entre X1 y X2 porque el coeficiente de correlación es significativamente diferente de cero.
  • Lo que significa la conclusión: Existe una relación lineal significativa entre X1 y X2. Si la prueba concluye que el coeficiente de correlación no es significativamente diferente de cero (está cerca de cero), decimos que el coeficiente de correlación es “no significativo”.

Realización de la prueba de hipótesis

  • Hipótesis nula: H0: ρ = 0
  • Hipótesis alternativa: Ha: ρ ≠ 0
Lo que significan las hipótesis en palabras
  • Hipótesis nula H0: El coeficiente de correlación de la población NO ES significativamente diferente de cero. NO HAY una relación lineal significativa (correlación) entre X1 y X2 en la población.
  • Hipótesis alternativa Ha: El coeficiente de correlación de la población es significativamente diferente de cero. Existe una relación lineal significativa (correlación) entre X1 y X2 en la población.

Llegar a una conclusiónHay dos métodos para tomar la decisión sobre la hipótesis. El estadístico de prueba para comprobar esta hipótesis es:

tc = r (1r2)(n2) tc= r (1r2)(n2)
OO
tc = rn2 1r2 tc= rn2 1r2
13.2

Donde la segunda fórmula es una forma equivalente al estadístico de prueba, n es el tamaño de la muestra y los grados de libertad son n-2. Se trata de la estadística t y funciona de la misma manera que otras pruebas t. Calcule el valor t y compárelo con el valor crítico de la tabla t con los grados de libertad adecuados y el nivel de confianza que desee mantener. Si el valor calculado está en la cola, entonces no se puede aceptar la hipótesis nula de que no existe ninguna relación lineal entre estas dos variables aleatorias independientes. Si el valor t calculado NO está en la cola, entonces no se puede rechazar la hipótesis nula de que no existe ninguna relación lineal entre las dos variables.

Una forma rápida de comprobar las correlaciones es la relación entre el tamaño de la muestra y la correlación. Si:

|r|2n|r|2n

entonces esto implica que la correlación entre las dos variables demuestra que existe una relación lineal y es estadísticamente significativa a un nivel de significación aproximado de 0,05. Como indica la fórmula, existe una relación inversa entre el tamaño de la muestra y la correlación necesaria para la significación de una relación lineal. Con solo 10 observaciones, la correlación requerida para la significación es de 0,6325, para 30 observaciones la correlación requerida para la significación disminuye a 0,3651 y a 100 observaciones el nivel requerido es solo de 0,2000.

Las correlaciones sirven para visualizar los datos, pero no se utilizan adecuadamente para "explicar" una relación entre dos variables. Tal vez no haya una estadística más mal utilizada que el coeficiente de correlación. Citar correlaciones entre las condiciones de salud y todo lo demás, desde el lugar de residencia hasta el color de los ojos, tiene el efecto de implicar una relación de causa y efecto. Esto no se logra con un coeficiente de correlación. El coeficiente de correlación es, por supuesto, inocente de esta mala interpretación. El analista tiene el deber de utilizar una estadística diseñada para comprobar las relaciones de causa y efecto y comunicar solo esos resultados si pretende hacer tal afirmación. El problema es que pasar esta prueba más rigurosa es difícil, por lo que los "investigadores" perezosos o inescrupulosos recurren a las correlaciones cuando no pueden presentar sus argumentos de forma legítima.

Solicitar una copia impresa

As an Amazon Associate we earn from qualifying purchases.

Cita/Atribución

¿Desea citar, compartir o modificar este libro? Este libro utiliza la Creative Commons Attribution License y debe atribuir a OpenStax.

Información de atribución
  • Si redistribuye todo o parte de este libro en formato impreso, debe incluir en cada página física la siguiente atribución:
    Acceso gratis en https://openstax.org/books/introducci%C3%B3n-estad%C3%ADstica-empresarial/pages/1-introduccion
  • Si redistribuye todo o parte de este libro en formato digital, debe incluir en cada vista de la página digital la siguiente atribución:
    Acceso gratuito en https://openstax.org/books/introducci%C3%B3n-estad%C3%ADstica-empresarial/pages/1-introduccion
Información sobre citas

© 28 ene. 2022 OpenStax. El contenido de los libros de texto que produce OpenStax tiene una licencia de Creative Commons Attribution License . El nombre de OpenStax, el logotipo de OpenStax, las portadas de libros de OpenStax, el nombre de OpenStax CNX y el logotipo de OpenStax CNX no están sujetos a la licencia de Creative Commons y no se pueden reproducir sin el previo y expreso consentimiento por escrito de Rice University.