Objetivos de aprendizaje
Al final de esta sección, estará en capacidad de:
- Describir algunas de las muchas aplicaciones prácticas de la electroestática, incluyendo varias tecnologías de impresión
- Relacionar estas aplicaciones con la segunda ley de Newton y la fuerza eléctrica
El estudio de la electroestática ha resultado útil en muchos ámbitos. Este módulo cubre solo algunas de las muchas aplicaciones de la electroestática.
El generador Van de Graaff
Los generadores de Van de Graaff (o Van de Graaffs) no solo son aparatos espectaculares utilizados para demostrar el alto voltaje debido a la electricidad estática, sino que también se utilizan para la investigación seria. El primero construyó Robert Van de Graaff en 1931 (basado en las sugerencias originales de Lord Kelvin) para su uso en la investigación de la física nuclear. La Figura 7.41 muestra un esquema de una versión de investigación de gran tamaño. Los Van de Graaffs utilizan tanto superficies lisas como puntiagudas, y conductores y aislantes para generar grandes cargas estáticas y, por tanto, grandes voltajes.
Se puede depositar un exceso de carga muy grande en la esfera porque se desplaza rápidamente hacia la superficie exterior. Los límites prácticos surgen porque los grandes campos eléctricos polarizan y acaban por ionizar los materiales circundantes, creando cargas libres que neutralizan el exceso de carga o permiten que se escape. Sin embargo, los voltajes de 15 millones de voltios están muy dentro de los límites prácticos.
Xerografía
La mayoría de las fotocopiadoras utilizan un proceso electroestático denominado xerografía, palabra acuñada a partir de las palabras griegas xeros, que significa seco, y graphos, que significa escritura. El núcleo del proceso se muestra de forma simplificada en la Figura 7.42.
Un tambor de aluminio recubierto de selenio se rocía con carga positiva desde los puntos de un dispositivo llamado corotrón. El selenio es una sustancia con una interesante propiedad: es un fotoconductor. Es decir, el selenio es un aislante cuando está en la oscuridad y un conductor cuando está expuesto a la luz.
En la primera etapa del proceso de xerografía, el tambor de aluminio conductor se conecta a tierra para que se induzca una carga negativa bajo la fina capa de selenio uniformemente cargada positivamente. En la segunda etapa, la superficie del tambor se expone a la imagen de lo que se va a copiar. En los lugares donde la imagen es ligera, el selenio se convierte en conductor y la carga positiva se neutraliza. En las zonas oscuras, la carga positiva permanece, por lo que la imagen se ha transferido al tambor.
La tercera etapa toma un polvo negro seco, llamado tóner, y lo rocía con una carga negativa para que las regiones positivas del tambor lo atraigan. A continuación, a un papel en blanco se le da una carga positiva mayor que la del tambor, de modo que este extraiga el tóner del tambor. Por último, el papel y el tóner que se mantiene electrostáticamente pasan por rodillos de presión calentados, que funden y adhieren permanentemente el tóner a las fibras del papel.
Impresoras láser
Las impresoras láser utilizan el proceso xerográfico para crear imágenes de alta calidad en el papel, empleando un láser para producir una imagen en el tambor fotoconductor, como se muestra en la Figura 7.43. En su aplicación más común, la impresora láser recibe la salida de un computador y puede lograr una salida de alta calidad debido a la precisión con la que se puede controlar la luz láser. Muchas impresoras láser realizan un importante procesamiento de la información, como la elaboración de letras o fuentes sofisticadas, y en el pasado podían tener un computador más potente que el que les proporcionaba los datos brutos a imprimir.
Impresoras de inyección de tinta y pintura electroestática
La impresora de inyección de tinta, utilizada habitualmente para imprimir textos y gráficos generados por computador, también emplea la electroestática. Una boquilla produce una fina pulverización de pequeñas gotas de tinta, a las que se les aplica una carga electroestática (Figura 7.44).
Una vez cargadas, las gotas pueden dirigirse, mediante pares de placas cargadas, con gran precisión para formar letras e imágenes en el papel. Las impresoras de inyección de tinta pueden producir imágenes en color utilizando un chorro negro y otros tres chorros con colores primarios, normalmente cian, magenta y amarillo, de forma parecida a como lo hace una televisión en color. (Esto es más difícil con la xerografía, que requiere múltiples tambores y tóneres).
La pintura electroestática emplea la carga para rociar pintura sobre superficies de formas extrañas. La repulsión mutua de las cargas similares hace que la pintura se aleje de su origen. La tensión superficial forma gotas, que luego son atraídas por cargas diferentes a la superficie a pintar. La pintura electroestática puede llegar a lugares de difícil acceso, aplicando una capa uniforme de forma controlada. Si el objeto es un conductor, el campo eléctrico es perpendicular a la superficie, tendiendo a traer las gotas perpendicularmente. Las esquinas y los puntos de los conductores recibirán pintura adicional. El fieltro puede aplicarse de forma similar.
Precipitadores de humo y limpieza electroestática del aire
Otra aplicación importante de la electroestática se encuentra en los limpiadores de aire, tanto grandes como pequeños. La parte electroestática del proceso coloca un exceso de carga (normalmente positiva) en el humo, el polvo, el polen y otras partículas del aire y, a continuación, hace pasar el aire por una rejilla con carga opuesta que atrae y retiene las partículas cargadas (Figura 7.45)
Los precipitadores electroestáticos grandes se utilizan en la industria para eliminar el más del de las partículas procedentes de las emisiones de gases de chimenea asociadas a la combustión de carbón y petróleo. Los precipitadores domésticos, a menudo en combinación con el sistema de calefacción y aire acondicionado del hogar, son muy eficaces para eliminar las partículas contaminantes, los agentes irritantes y los alérgenos.