Skip to Content
OpenStax Logo
  1. Preface
  2. 1 Foundations
    1. Introduction
    2. 1.1 Introduction to Whole Numbers
    3. 1.2 Use the Language of Algebra
    4. 1.3 Add and Subtract Integers
    5. 1.4 Multiply and Divide Integers
    6. 1.5 Visualize Fractions
    7. 1.6 Add and Subtract Fractions
    8. 1.7 Decimals
    9. 1.8 The Real Numbers
    10. 1.9 Properties of Real Numbers
    11. 1.10 Systems of Measurement
    12. Key Terms
    13. Key Concepts
    14. Exercises
      1. Review Exercises
      2. Practice Test
  3. 2 Solving Linear Equations and Inequalities
    1. Introduction
    2. 2.1 Solve Equations Using the Subtraction and Addition Properties of Equality
    3. 2.2 Solve Equations using the Division and Multiplication Properties of Equality
    4. 2.3 Solve Equations with Variables and Constants on Both Sides
    5. 2.4 Use a General Strategy to Solve Linear Equations
    6. 2.5 Solve Equations with Fractions or Decimals
    7. 2.6 Solve a Formula for a Specific Variable
    8. 2.7 Solve Linear Inequalities
    9. Key Terms
    10. Key Concepts
    11. Exercises
      1. Review Exercises
      2. Practice Test
  4. 3 Math Models
    1. Introduction
    2. 3.1 Use a Problem-Solving Strategy
    3. 3.2 Solve Percent Applications
    4. 3.3 Solve Mixture Applications
    5. 3.4 Solve Geometry Applications: Triangles, Rectangles, and the Pythagorean Theorem
    6. 3.5 Solve Uniform Motion Applications
    7. 3.6 Solve Applications with Linear Inequalities
    8. Key Terms
    9. Key Concepts
    10. Exercises
      1. Review Exercises
      2. Practice Test
  5. 4 Graphs
    1. Introduction
    2. 4.1 Use the Rectangular Coordinate System
    3. 4.2 Graph Linear Equations in Two Variables
    4. 4.3 Graph with Intercepts
    5. 4.4 Understand Slope of a Line
    6. 4.5 Use the Slope-Intercept Form of an Equation of a Line
    7. 4.6 Find the Equation of a Line
    8. 4.7 Graphs of Linear Inequalities
    9. Key Terms
    10. Key Concepts
    11. Exercises
      1. Review Exercises
      2. Practice Test
  6. 5 Systems of Linear Equations
    1. Introduction
    2. 5.1 Solve Systems of Equations by Graphing
    3. 5.2 Solving Systems of Equations by Substitution
    4. 5.3 Solve Systems of Equations by Elimination
    5. 5.4 Solve Applications with Systems of Equations
    6. 5.5 Solve Mixture Applications with Systems of Equations
    7. 5.6 Graphing Systems of Linear Inequalities
    8. Key Terms
    9. Key Concepts
    10. Exercises
      1. Review Exercises
      2. Practice Test
  7. 6 Polynomials
    1. Introduction
    2. 6.1 Add and Subtract Polynomials
    3. 6.2 Use Multiplication Properties of Exponents
    4. 6.3 Multiply Polynomials
    5. 6.4 Special Products
    6. 6.5 Divide Monomials
    7. 6.6 Divide Polynomials
    8. 6.7 Integer Exponents and Scientific Notation
    9. Key Terms
    10. Key Concepts
    11. Exercises
      1. Review Exercises
      2. Practice Test
  8. 7 Factoring
    1. Introduction
    2. 7.1 Greatest Common Factor and Factor by Grouping
    3. 7.2 Factor Trinomials of the Form x2+bx+c
    4. 7.3 Factor Trinomials of the Form ax2+bx+c
    5. 7.4 Factor Special Products
    6. 7.5 General Strategy for Factoring Polynomials
    7. 7.6 Quadratic Equations
    8. Key Terms
    9. Key Concepts
    10. Exercises
      1. Review Exercises
      2. Practice Test
  9. 8 Rational Expressions and Equations
    1. Introduction
    2. 8.1 Simplify Rational Expressions
    3. 8.2 Multiply and Divide Rational Expressions
    4. 8.3 Add and Subtract Rational Expressions with a Common Denominator
    5. 8.4 Add and Subtract Rational Expressions with Unlike Denominators
    6. 8.5 Simplify Complex Rational Expressions
    7. 8.6 Solve Rational Equations
    8. 8.7 Solve Proportion and Similar Figure Applications
    9. 8.8 Solve Uniform Motion and Work Applications
    10. 8.9 Use Direct and Inverse Variation
    11. Key Terms
    12. Key Concepts
    13. Exercises
      1. Review Exercises
      2. Practice Test
  10. 9 Roots and Radicals
    1. Introduction
    2. 9.1 Simplify and Use Square Roots
    3. 9.2 Simplify Square Roots
    4. 9.3 Add and Subtract Square Roots
    5. 9.4 Multiply Square Roots
    6. 9.5 Divide Square Roots
    7. 9.6 Solve Equations with Square Roots
    8. 9.7 Higher Roots
    9. 9.8 Rational Exponents
    10. Key Terms
    11. Key Concepts
    12. Exercises
      1. Review Exercises
      2. Practice Test
  11. 10 Quadratic Equations
    1. Introduction
    2. 10.1 Solve Quadratic Equations Using the Square Root Property
    3. 10.2 Solve Quadratic Equations by Completing the Square
    4. 10.3 Solve Quadratic Equations Using the Quadratic Formula
    5. 10.4 Solve Applications Modeled by Quadratic Equations
    6. 10.5 Graphing Quadratic Equations in Two Variables
    7. Key Terms
    8. Key Concepts
    9. Exercises
      1. Review Exercises
      2. Practice Test
  12. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
  13. Index

Be Prepared

7.1

22272227

7.2

72

7.3

18a3318a33

7.4

x2+9x+20x2+9x+20

7.5

−15 −3

7.6

−54 54

7.7

7.8

15p215p2

7.9

6y2+23y+206y2+23y+20

7.10

12x2+8x+912x2+8x+9

7.11

144x2144x2

7.12

m28m+16m28m+16

7.13

p218p+81p218p+81

7.14

k29k29

7.15

(y6)(y+4)(y6)(y+4)

7.16

(3t+2)(t+5)(3t+2)(t+5)

7.17

(6p5)2(6p5)2

7.18

5(x4)(x+4)5(x4)(x+4)

7.19

y=35y=35

7.20

a=0a=0

7.21

12x22x12x22x

7.22

n(n11)(n+2)n(n11)(n+2)

Try It

7.1

16

7.2

2

7.3

6x26x2

7.4

8y28y2

7.5

2ab2ab

7.6

3m3n3m3n

7.7

5m25m2

7.8

7x7x

7.9

6(a+4)6(a+4)

7.10

2(b+7)2(b+7)

7.11

14(x+1)14(x+1)

7.12

12(p+1)12(p+1)

7.13

8(u2)8(u2)

7.14

30(y2)30(y2)

7.15

5(x25x+3)5(x25x+3)

7.16

3(y24y+9)3(y24y+9)

7.17

2x2(x+6)2x2(x+6)

7.18

3y2(2y5)3y2(2y5)

7.19

2x(10x25x+7)2x(10x25x+7)

7.20

4y(6y23y5)4y(6y23y5)

7.21

3y2(3x+2x2+7y)3y2(3x+2x2+7y)

7.22

3p(p22pq+3q3)3p(p22pq+3q3)

7.23

−16(z+4)−16(z+4)

7.24

−9(y+3)−9(y+3)

7.25

−4b(b4)−4b(b4)

7.26

−7a(a3)−7a(a3)

7.27

(m+3)(4m7)(m+3)(4m7)

7.28

(n4)(8n+5)(n4)(8n+5)

7.29

(x+8)(y+3)(x+8)(y+3)

7.30

(a+7)(b+8)(a+7)(b+8)

7.31

(x5)(x+2)(x5)(x+2)

7.32

(y+4)(y7)(y+4)(y7)

7.33

(x+2)(x+4)(x+2)(x+4)

7.34

(y+3)(y+5)(y+3)(y+5)

7.35

(q+4)(q+6)(q+4)(q+6)

7.36

(t+2)(t+12)(t+2)(t+12)

7.37

(x+4)(x+15)(x+4)(x+15)

7.38

(v+3)(v+20)(v+3)(v+20)

7.39

(u3)(u6)(u3)(u6)

7.40

(y7)(y9)(y7)(y9)

7.41

(h2)(h+6)(h2)(h+6)

7.42

(k4)(k+5)(k4)(k+5)

7.43

(x+2)(x6)(x+2)(x6)

7.44

(y+4)(y5)(y+4)(y5)

7.45

(r+5)(r8)(r+5)(r8)

7.46

(s+2)(s5)(s+2)(s5)

7.47

prime

7.48

prime

7.49

(m+3)(m+6)(m+3)(m+6)

7.50

(n3)(n4)(n3)(n4)

7.51

(u+4v)(u+7v)(u+4v)(u+7v)

7.52

(x+6y)(x+7y)(x+6y)(x+7y)

7.53

(ab)(a10b)(ab)(a10b)

7.54

(mn)(m12n)(mn)(m12n)

7.55

prime

7.56

prime

7.57

no method undo using FOIL factor with grouping

7.58

factor using grouping no method undo using FOIL

7.59

4(m+1)(m2)4(m+1)(m2)

7.60

5(k+2)(k5)5(k+2)(k5)

7.61

3(r1)(r2)3(r1)(r2)

7.62

2(t2)(t3)2(t2)(t3)

7.63

5x(x1)(x+4)5x(x1)(x+4)

7.64

6y(y2)(y+5)6y(y2)(y+5)

7.65

(a+1)(2a+3)(a+1)(2a+3)

7.66

(b+1)(4b+1)(b+1)(4b+1)

7.67

(2x3)(4x1)(2x3)(4x1)

7.68

(2y7)(5y1)(2y7)(5y1)

7.69

(a1)(8a+5)(a1)(8a+5)

7.70

(2b+3)(3b5)(2b+3)(3b5)

7.71

(3x+2)(6x5)(3x+2)(6x5)

7.72

(3y+1)(10y21)(3y+1)(10y21)

7.73

5n(n4)(3n5)5n(n4)(3n5)

7.74

8q(q+6)(7q2)8q(q+6)(7q2)

7.75

(x+2)(6x+1)(x+2)(6x+1)

7.76

(2y+1)(2y+3)(2y+1)(2y+3)

7.77

(4h+5)(5h3)(4h+5)(5h3)

7.78

(g+4)(6g5)(g+4)(6g5)

7.79

(2t+5)(5t3)(2t+5)(5t3)

7.80

(u+1)(3u+5)(u+1)(3u+5)

7.81

4(2x3)(2x1)4(2x3)(2x1)

7.82

3(3w2)(2w3)3(3w2)(2w3)

7.83

(2x+3)2(2x+3)2

7.84

(3y+4)2(3y+4)2

7.85

(8y5)2(8y5)2

7.86

(4z9)2(4z9)2

7.87

(7x+6y)2(7x+6y)2

7.88

(8m+7n)2(8m+7n)2

7.89

(8r+3s)(2r+3s)(8r+3s)(2r+3s)

7.90

(3u+4)(3u+25)(3u+4)(3u+25)

7.91

2y(2x3)22y(2x3)2

7.92

3q(3p+5)23q(3p+5)2

7.93

(h9)(h+9)(h9)(h+9)

7.94

(k11)(k+11)(k11)(k+11)

7.95

(m1)(m+1)(m1)(m+1)

7.96

(9y1)(9y+1)(9y1)(9y+1)

7.97

(14m5n)(14m+5n)(14m5n)(14m+5n)

7.98

9(4pq)(4p+q)9(4pq)(4p+q)

7.99

(12x)(12+x)(12x)(12+x)

7.100

(13p)(13+p)(13p)(13+p)

7.101

(a2+b2)(a+b)(ab)(a2+b2)(a+b)(ab)

7.102

(x2+4)(x+2)(x2)(x2+4)(x+2)(x2)

7.103

7x(y5)(y+5)7x(y5)(y+5)

7.104

5b(3a4)(3a+4)5b(3a4)(3a+4)

7.105

8(a2+25)8(a2+25)

7.106

9(4y2+9)9(4y2+9)

7.107

(x+3)(x23x+9)(x+3)(x23x+9)

7.108

(y+2)(y22y+4)(y+2)(y22y+4)

7.109

(u5)(u2+5u+25)(u5)(u2+5u+25)

7.110

(v7)(v2+7v+49)(v7)(v2+7v+49)

7.111

(43x)(16+12x+9x2)(43x)(16+12x+9x2)

7.112

(32y)(9+6y+4y2)(32y)(9+6y+4y2)

7.113

(2x3y)(4x2+6xy+9y2)(2x3y)(4x2+6xy+9y2)

7.114

125(2mn)(4m2+8mn+n2)125(2mn)(4m2+8mn+n2)

7.115

4(5p+q)(25p25pq+q2)4(5p+q)(25p25pq+q2)

7.116

2(6c+7d)(36c242cd+49d2)2(6c+7d)(36c242cd+49d2)

7.117

3a3(a+6)3a3(a+6)

7.118

9b5(5b+3)9b5(5b+3)

7.119

(5a6)(2a1)(5a6)(2a1)

7.120

(2x3)(4x3)(2x3)(4x3)

7.121

x(x2+36)x(x2+36)

7.122

3(9y2+16)3(9y2+16)

7.123

4x(2x3)(2x+3)4x(2x3)(2x+3)

7.124

3(3y4)(3y+4)3(3y4)(3y+4)

7.125

(2x+5y)2(2x+5y)2

7.126

(3m+7n)2(3m+7n)2

7.127

8(y1)(y+3)8(y1)(y+3)

7.128

5(u9)(u+6)5(u9)(u+6)

7.129

2(5m+6)(25m230m+36)2(5m+6)(25m230m+36)

7.130

3(3q+4)(9q212q+16)3(3q+4)(9q212q+16)

7.131

4(a2+4)(a2)(a+2)4(a2+4)(a2)(a+2)

7.132

7(y2+1)(y1)(y+1)7(y2+1)(y1)(y+1)

7.133

6(x+b)(x2c)6(x+b)(x2c)

7.134

2(4x1)(2x+3y)2(4x1)(2x+3y)

7.135

4(p1)(p3)4(p1)(p3)

7.136

3(q2)(2q+1)3(q2)(2q+1)

7.137

x=3,x=−5x=3,x=−5

7.138

y=6,y=−9y=6,y=−9

7.139

m=23,m=12m=23,m=12

7.140

p=34,p=34p=34,p=34

7.141

u=0,u=15u=0,u=15

7.142

w=0,w=32w=0,w=32

7.143

x=−1x=−1

7.144

v=2v=2

7.145

x=4,x=−3x=4,x=−3

7.146

b=−2,b=−7b=−2,b=−7

7.147

c=2,c=43c=2,c=43

7.148

d=3,d=12d=3,d=12

7.149

a=0,a=−1a=0,a=−1

7.150

b=0,b=13b=0,b=13

7.151

p=75,p=75p=75,p=75

7.152

x=116,x=116x=116,x=116

7.153

m=1,m=32m=1,m=32

7.154

k=3,k=−3k=3,k=−3

7.155

x=0,x=32x=0,x=32

7.156

y=0,y=14y=0,y=14

7.157

a=52,a=23a=52,a=23

7.158

b=−2,b=120b=−2,b=120

7.159

−15,−16and15,16−15,−16and15,16

7.160

−21,−20and20,21−21,−20and20,21

7.161

55 feet and 66 feet

7.162

1212 feet and 1515 feet

7.163

55 feet and 1212 feet

7.164

2424 feet and 2525 feet

Section 7.1 Exercises

1.

2

3.

18

5.

10

7.

xx

9.

8w28w2

11.

2pq2pq

13.

6m2n36m2n3

15.

2a2a

17.

5x35x3

19.

4(x+5)4(x+5)

21.

3(2m+3)3(2m+3)

23.

9(q+1)9(q+1)

25.

8(m1)8(m1)

27.

9(n7)9(n7)

29.

3(x2+2x3)3(x2+2x3)

31.

2(4p2+2p+1)2(4p2+2p+1)

33.

8y2(y+2)8y2(y+2)

35.

5x(x23x+4)5x(x23x+4)

37.

6y2(2x+3x25y)6y2(2x+3x25y)

39.

−2(x+2)−2(x+2)

41.

(x+1)(5x+3)(x+1)(5x+3)

43.

(b2)(3b13)(b2)(3b13)

45.

(y+3)(x+2)(y+3)(x+2)

47.

(u+2)(v9)(u+2)(v9)

49.

(b4)(b+5)(b4)(b+5)

51.

(p9)(p+4)(p9)(p+4)

53.

−10(2x+1)−10(2x+1)

55.

(x2+2)(3x7)(x2+2)(3x7)

57.

(x+y)(x+5)(x+y)(x+5)

59.

w(w6)w(w6)

61.

Answers will vary.

Section 7.2 Exercises

63.

(x+1)(x+3)(x+1)(x+3)

65.

(m+1)(m+11)(m+1)(m+11)

67.

(a+4)(a+5)(a+4)(a+5)

69.

(p+5)(p+6)(p+5)(p+6)

71.

(n+3)(n+16)(n+3)(n+16)

73.

(a+5)(a+20)(a+5)(a+20)

75.

(x2)(x6)(x2)(x6)

77.

(y3)(y15)(y3)(y15)

79.

(x1)(x7)(x1)(x7)

81.

(p1)(p+6)(p1)(p+6)

83.

(y+1)(y7)(y+1)(y7)

85.

(x4)(x+3)(x4)(x+3)

87.

(a7)(a+4)(a7)(a+4)

89.

(w9)(w+4)(w9)(w+4)

91.

prime

93.

(x4)(x2)(x4)(x2)

95.

(x12)(x+1)(x12)(x+1)

97.

(p+q)(p+2q)(p+q)(p+2q)

99.

(r+3s)(r+12s)(r+3s)(r+12s)

101.

(m2n)(m10n)(m2n)(m10n)

103.

(x+8y)(x10y)(x+8y)(x10y)

105.

(m+n)(m65n)(m+n)(m65n)

107.

(a+8b)(a3b)(a+8b)(a3b)

109.

prime

111.

prime

113.

(u6)(u6)(u6)(u6)

115.

(x+2)(x16)(x+2)(x16)

117.

(r4s)(r16s)(r4s)(r16s)

119.

(k+4)(k+30)(k+4)(k+30)

121.

prime

123.

(m+8n)(m7n)(m+8n)(m7n)

125.

(u15v)(u2v)(u15v)(u2v)

127.

prime

129.

(x+8)(x7)(x+8)(x7)

131.

Answers may vary

133.

Answers may vary

Section 7.3 Exercises

135.

factor the GCF, binomial Undo FOIL factor by grouping

137.

undo FOIL factor by grouping factor the GCF, binomial

139.

5(x+1)(x+6)5(x+1)(x+6)

141.

2(z4)(z+3)2(z4)(z+3)

143.

7(v1)(v8)7(v1)(v8)

145.

p(p10)(p+2)p(p10)(p+2)

147.

3m(m5)(m2)3m(m5)(m2)

149.

5x2(x3)(x+5)5x2(x3)(x+5)

151.

(2t+5)(t+1)(2t+5)(t+1)

153.

(11x+1)(x+3)(11x+1)(x+3)

155.

(4w1)(w1)(4w1)(w1)

157.

(3p2)(2p5)(3p2)(2p5)

159.

(4q+1)(q2)(4q+1)(q2)

161.

(4p3)(p+5)(4p3)(p+5)

163.

16(x1)(x1)16(x1)(x1)

165.

10q(3q+2)(q+4)10q(3q+2)(q+4)

167.

(5n+1)(n+4)(5n+1)(n+4)

169.

(3z+1)(3z+4)(3z+1)(3z+4)

171.

(2k3)(2k5)(2k3)(2k5)

173.

(5s4)(s1)(5s4)(s1)

175.

(3y+5)(2y3)(3y+5)(2y3)

177.

(2n+3)(n15)(2n+3)(n15)

179.

prime

181.

10(6y1)(y+5)10(6y1)(y+5)

183.

3z(8z+3)(2z5)3z(8z+3)(2z5)

185.

8(2s+3)(s+1)8(2s+3)(s+1)

187.

12(4y3)(y+1)12(4y3)(y+1)

189.

(4y7)(3y2)(4y7)(3y2)

191.

(a5)(a+4)(a5)(a+4)

193.

(2n1)(3n+4)(2n1)(3n+4)

195.

prime

197.

13(z2+3z2)13(z2+3z2)

199.

(x+7)(x4)(x+7)(x4)

201.

3p(p+7)3p(p+7)

203.

6(r+2)(r+3)6(r+2)(r+3)

205.

4(2n+1)(3n+1)4(2n+1)(3n+1)

207.

(x+6)(x4)(x+6)(x4)

209.

−16(t6)(t+1)−16(t6)(t+1)

211.

Answers may vary.

213.

Answers may vary.

Section 7.4 Exercises

215.

(4y+3)2(4y+3)2

217.

(6s+7)2(6s+7)2

219.

(10x1)2(10x1)2

221.

(5n12)2(5n12)2

223.

(7x2y)2(7x2y)2

225.

(5n+4)(5n+1)(5n+4)(5n+1)

227.

(8m1)2(8m1)2

229.

10(k+4)210(k+4)2

231.

3u(5uv)23u(5uv)2

233.

(x4)(x+4)(x4)(x+4)

235.

(5v1)(5v+1)(5v1)(5v+1)

237.

(11x12y)(11x+12y)(11x12y)(11x+12y)

239.

(13c6d)(13c+6d)(13c6d)(13c+6d)

241.

(27x)(2+7x)(27x)(2+7x)

243.

(2z1)(2z+1)(4z2+1)(2z1)(2z+1)(4z2+1)

245.

5(q3)(q+3)5(q3)(q+3)

247.

6(4p2+9)6(4p2+9)

249.

(x+5)(x25x+25)(x+5)(x25x+25)

251.

(z3)(z2+3z+9)(z3)(z2+3z+9)

253.

(27t)(4+14t+49t2)(27t)(4+14t+49t2)

255.

(2y5z)(4y2+10yz+25z2)(2y5z)(4y2+10yz+25z2)

257.

7(k+2)(k22k+4)7(k+2)(k22k+4)

259.

2(12y)(1+2y+4y2)2(12y)(1+2y+4y2)

261.

(8a5)(8a+5)(8a5)(8a+5)

263.

3(3q1)(3q+1)3(3q1)(3q+1)

265.

(4x9)2(4x9)2

267.

2(4p2+1)2(4p2+1)

269.

(52y)(25+10y+4y2)(52y)(25+10y+4y2)

271.

5(3n+2)25(3n+2)2

273.

(2w+15)2(2w+15)2

275.

Answers may vary.

277.

Answers may vary.

Section 7.5 Exercises

279.

5x3(2x+7)5x3(2x+7)

281.

(y3)(y+13)(y3)(y+13)

283.

(2n1)(n+7)(2n1)(n+7)

285.

a3(a2+9)a3(a2+9)

287.

(11rs)(11r+s)(11rs)(11r+s)

289.

8(m2)(m+2)8(m2)(m+2)

291.

(5w6)2(5w6)2

293.

(m+7n)2(m+7n)2

295.

7(b+3)(b2)7(b+3)(b2)

297.

3(x3)(x2+3x+9)3(x3)(x2+3x+9)

299.

(k2)(k+2)(k2+4)(k2)(k+2)(k2+4)

301.

3(5p+4)(q1)3(5p+4)(q1)

303.

4(x+3)(x+7)4(x+3)(x+7)

305.

u2(u+1)(u2u+1)u2(u+1)(u2u+1)

307.

prime

309.

10(m5)(m+5)(m2+25)10(m5)(m+5)(m2+25)

311.

−16(t25)−16(t25) −8(2t+5)(t2)−8(2t+5)(t2)

313.

Answer may vary.

Section 7.6 Exercises

315.

x=3,x=−7x=3,x=−7

317.

a=10/3,a=7/2a=10/3,a=7/2

319.

m=0,m=5/12m=0,m=5/12

321.

y=3y=3

323.

x=1/2x=1/2

325.

x=−3,x=−4x=−3,x=−4

327.

a=−4/5,a=6a=−4/5,a=6

329.

m=5/4,m=3m=5/4,m=3

331.

a=−1,a=0a=−1,a=0

333.

m=12/7,m=−12/7m=12/7,m=−12/7

335.

y=−1,y=6y=−1,y=6

337.

x=3/2,x=−1x=3/2,x=−1

339.

p=0,p=¾p=0,p=¾

341.

x=3/2x=3/2

343.

7and8;8and−77and8;8and−7

345.

4feet and7feet4feet and7feet

347.

6feet and8feet6feet and8feet

349.

x=−8,x=3x=−8,x=3

351.

p=−1,p=−11p=−1,p=−11

353.

m=−2,m=8m=−2,m=8

355.

a=0,a=−6,a=7a=0,a=−6,a=7

357.

10and11;11and−1010and11;11and−10

359.

10 feet

361.

Answers may vary.

Review Exercises

363.

6

365.

1515

367.

6(4x7)6(4x7)

369.

3m2(5m2+2n)3m2(5m2+2n)

371.

(a+b)(xy)(a+b)(xy)

373.

(x3)(x+7)(x3)(x+7)

375.

(m2+1)(m+1)(m2+1)(m+1)

377.

(u+8)(u+9)(u+8)(u+9)

379.

(k6)(k10)(k6)(k10)

381.

(y+7)(y1)(y+7)(y1)

383.

(s4)(s+2)(s4)(s+2)

385.

(x+5y)(x+7y)(x+5y)(x+7y)

387.

(a+7b)(a3b)(a+7b)(a3b)

389.

Undo FOIL

391.

Factor the GCF

393.

6(x+2)(x+5)6(x+2)(x+5)

395.

3n2(n8)(n+4)3n2(n8)(n+4)

397.

(x+4)(2x+1)(x+4)(2x+1)

399.

(3a1)(6a1)(3a1)(6a1)

401.

(5p+4)(3p2)(5p+4)(3p2)

403.

(5s2)(8s+3)(5s2)(8s+3)

405.

3(x+4)(x3)3(x+4)(x3)

407.

5(4y+1)(3y5)5(4y+1)(3y5)

409.

(5x+3)2(5x+3)2

411.

(6a7b)2(6a7b)2

413.

10(2x+9)210(2x+9)2

415.

2y(y4)22y(y4)2

417.

(9r5)(9r+5)(9r5)(9r+5)

419.

(13m+n)(13mn)(13m+n)(13mn)

421.

(5p1)(5p+1)(5p1)(5p+1)

423.

(3+11y)(311y)(3+11y)(311y)

425.

5(2x5)(2x+5)5(2x5)(2x+5)

427.

u(7u+3)(7u3)u(7u+3)(7u3)

429.

(a5)(a2+5a+25)(a5)(a2+5a+25)

431.

2(m+3)(m23m+9)2(m+3)(m23m+9)

433.

4x2(6x+11)4x2(6x+11)

435.

(4n7m)2(4n7m)2

437.

(r+6)(5r8)(r+6)(5r8)

439.

(n2+9)(n+3)(n3)(n2+9)(n+3)(n3)

441.

5(x3)(x+4)5(x3)(x+4)

443.

(m+5)(m25m+25)(m+5)(m25m+25)

445.

a=3,a=−7a=3,a=−7

447.

m=0m=–6m=52m=0m=–6m=52

449.

x=−4,x=−5x=−4,x=−5

451.

p=52,p=8p=52,p=8

453.

m=512,m=512m=512,m=512

455.

−21and−22;21and22−21and−22;21and22

Practice Test

457.

14(y3)14(y3)

459.

40a2(2+3a)40a2(2+3a)

461.

(x+7)(x+6)(x+7)(x+6)

463.

3a(a6)(a+4)3a(a6)(a+4)

465.

5(n+3)25(n+3)2

467.

(x8)(y+7)(x8)(y+7)

469.

(3s2)2(3s2)2

471.

(10a)(10+a)(10a)(10+a)

473.

3(x+5y)(x5y)3(x+5y)(x5y)

475.

(a3)(b2)(a3)(b2)

477.

(4m+1)(2m+5)(4m+1)(2m+5)

479.

y=−11,y=12y=−11,y=12

481.

b=1,b=−1b=1,b=−1

483.

n=74,n=−3n=74,n=−3

485.

12and13;13and−1212and13;13and−12

Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/elementary-algebra-2e/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/elementary-algebra-2e/pages/1-introduction
Citation information

© Apr 14, 2020 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.