Skip to Content
OpenStax Logo
  1. Preface
  2. 1 Foundations
    1. Introduction
    2. 1.1 Introduction to Whole Numbers
    3. 1.2 Use the Language of Algebra
    4. 1.3 Add and Subtract Integers
    5. 1.4 Multiply and Divide Integers
    6. 1.5 Visualize Fractions
    7. 1.6 Add and Subtract Fractions
    8. 1.7 Decimals
    9. 1.8 The Real Numbers
    10. 1.9 Properties of Real Numbers
    11. 1.10 Systems of Measurement
    12. Key Terms
    13. Key Concepts
    14. Exercises
      1. Review Exercises
      2. Practice Test
  3. 2 Solving Linear Equations and Inequalities
    1. Introduction
    2. 2.1 Solve Equations Using the Subtraction and Addition Properties of Equality
    3. 2.2 Solve Equations using the Division and Multiplication Properties of Equality
    4. 2.3 Solve Equations with Variables and Constants on Both Sides
    5. 2.4 Use a General Strategy to Solve Linear Equations
    6. 2.5 Solve Equations with Fractions or Decimals
    7. 2.6 Solve a Formula for a Specific Variable
    8. 2.7 Solve Linear Inequalities
    9. Key Terms
    10. Key Concepts
    11. Exercises
      1. Review Exercises
      2. Practice Test
  4. 3 Math Models
    1. Introduction
    2. 3.1 Use a Problem-Solving Strategy
    3. 3.2 Solve Percent Applications
    4. 3.3 Solve Mixture Applications
    5. 3.4 Solve Geometry Applications: Triangles, Rectangles, and the Pythagorean Theorem
    6. 3.5 Solve Uniform Motion Applications
    7. 3.6 Solve Applications with Linear Inequalities
    8. Key Terms
    9. Key Concepts
    10. Exercises
      1. Review Exercises
      2. Practice Test
  5. 4 Graphs
    1. Introduction
    2. 4.1 Use the Rectangular Coordinate System
    3. 4.2 Graph Linear Equations in Two Variables
    4. 4.3 Graph with Intercepts
    5. 4.4 Understand Slope of a Line
    6. 4.5 Use the Slope-Intercept Form of an Equation of a Line
    7. 4.6 Find the Equation of a Line
    8. 4.7 Graphs of Linear Inequalities
    9. Key Terms
    10. Key Concepts
    11. Exercises
      1. Review Exercises
      2. Practice Test
  6. 5 Systems of Linear Equations
    1. Introduction
    2. 5.1 Solve Systems of Equations by Graphing
    3. 5.2 Solving Systems of Equations by Substitution
    4. 5.3 Solve Systems of Equations by Elimination
    5. 5.4 Solve Applications with Systems of Equations
    6. 5.5 Solve Mixture Applications with Systems of Equations
    7. 5.6 Graphing Systems of Linear Inequalities
    8. Key Terms
    9. Key Concepts
    10. Exercises
      1. Review Exercises
      2. Practice Test
  7. 6 Polynomials
    1. Introduction
    2. 6.1 Add and Subtract Polynomials
    3. 6.2 Use Multiplication Properties of Exponents
    4. 6.3 Multiply Polynomials
    5. 6.4 Special Products
    6. 6.5 Divide Monomials
    7. 6.6 Divide Polynomials
    8. 6.7 Integer Exponents and Scientific Notation
    9. Key Terms
    10. Key Concepts
    11. Exercises
      1. Review Exercises
      2. Practice Test
  8. 7 Factoring
    1. Introduction
    2. 7.1 Greatest Common Factor and Factor by Grouping
    3. 7.2 Factor Trinomials of the Form x2+bx+c
    4. 7.3 Factor Trinomials of the Form ax2+bx+c
    5. 7.4 Factor Special Products
    6. 7.5 General Strategy for Factoring Polynomials
    7. 7.6 Quadratic Equations
    8. Key Terms
    9. Key Concepts
    10. Exercises
      1. Review Exercises
      2. Practice Test
  9. 8 Rational Expressions and Equations
    1. Introduction
    2. 8.1 Simplify Rational Expressions
    3. 8.2 Multiply and Divide Rational Expressions
    4. 8.3 Add and Subtract Rational Expressions with a Common Denominator
    5. 8.4 Add and Subtract Rational Expressions with Unlike Denominators
    6. 8.5 Simplify Complex Rational Expressions
    7. 8.6 Solve Rational Equations
    8. 8.7 Solve Proportion and Similar Figure Applications
    9. 8.8 Solve Uniform Motion and Work Applications
    10. 8.9 Use Direct and Inverse Variation
    11. Key Terms
    12. Key Concepts
    13. Exercises
      1. Review Exercises
      2. Practice Test
  10. 9 Roots and Radicals
    1. Introduction
    2. 9.1 Simplify and Use Square Roots
    3. 9.2 Simplify Square Roots
    4. 9.3 Add and Subtract Square Roots
    5. 9.4 Multiply Square Roots
    6. 9.5 Divide Square Roots
    7. 9.6 Solve Equations with Square Roots
    8. 9.7 Higher Roots
    9. 9.8 Rational Exponents
    10. Key Terms
    11. Key Concepts
    12. Exercises
      1. Review Exercises
      2. Practice Test
  11. 10 Quadratic Equations
    1. Introduction
    2. 10.1 Solve Quadratic Equations Using the Square Root Property
    3. 10.2 Solve Quadratic Equations by Completing the Square
    4. 10.3 Solve Quadratic Equations Using the Quadratic Formula
    5. 10.4 Solve Applications Modeled by Quadratic Equations
    6. 10.5 Graphing Quadratic Equations in Two Variables
    7. Key Terms
    8. Key Concepts
    9. Exercises
      1. Review Exercises
      2. Practice Test
  12. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
  13. Index

5.1 Solve Systems of Equations by Graphing

  • To solve a system of linear equations by graphing
    1. Step 1. Graph the first equation.
    2. Step 2. Graph the second equation on the same rectangular coordinate system.
    3. Step 3. Determine whether the lines intersect, are parallel, or are the same line.
    4. Step 4. Identify the solution to the system.
      If the lines intersect, identify the point of intersection. Check to make sure it is a solution to both equations. This is the solution to the system.
      If the lines are parallel, the system has no solution.
      If the lines are the same, the system has an infinite number of solutions.
    5. Step 5. Check the solution in both equations.

  • Determine the number of solutions from the graph of a linear system
    This table has two columns and four rows. The first row labels each column “Graph” and “Number of solutions.” Under “Graph” are “2 intersecting lines,” “Parallel lines,” and “Same line.” Under “Number of solutions” are “1,” “None,” and “Infinitely many.”
  • Determine the number of solutions of a linear system by looking at the slopes and intercepts
    This table is entitled “Number of Solutions of a Linear System of Equations.” There are four columns. The columns are labeled, “Slopes,” “Intercepts,” “Type of Lines,” “Number of Solutions.” Under “Slopes” are “Different,” “Same,” and “Same.” Under “Intercepts,” the first cell is blank, then the words “Different” and “Same” appear. Under “Types of Lines” are the words, “Intersecting,” “Parallel,” and “Coincident.” Under “Number of Solutions” are “1 point,” “No Solution,” and “Infinitely many solutions.”
  • Determine the number of solutions and how to classify a system of equations
    This table has four columns and four rows. The columns are labeled, “Lines,” “Intersecting,” “Parallel,” and “Coincident.” In the first row under the labeled column “lines” it reads “Number of solutions.” Reading across, it tell us that an intersecting line contains 1 point, a parallel line provides no solution, and a coincident line has infinitely many solutions. A consistent/inconsistent line has consistent lines if they are intersecting, inconsistent lines if they are parallel and consistent if the lines are coincident. Finally, dependent and independent lines are considered independent if the lines intersect, they are also independent if the lines are parallel, and they are dependent if the lines are coincident.

  • Problem Solving Strategy for Systems of Linear Equations
    1. Step 1. Read the problem. Make sure all the words and ideas are understood.
    2. Step 2. Identify what we are looking for.
    3. Step 3. Name what we are looking for. Choose variables to represent those quantities.
    4. Step 4. Translate into a system of equations.
    5. Step 5. Solve the system of equations using good algebra techniques.
    6. Step 6. Check the answer in the problem and make sure it makes sense.
    7. Step 7. Answer the question with a complete sentence.

5.2 Solving Systems of Equations by Substitution

  • Solve a system of equations by substitution
    1. Step 1. Solve one of the equations for either variable.
    2. Step 2. Substitute the expression from Step 1 into the other equation.
    3. Step 3. Solve the resulting equation.
    4. Step 4. Substitute the solution in Step 3 into one of the original equations to find the other variable.
    5. Step 5. Write the solution as an ordered pair.
    6. Step 6. Check that the ordered pair is a solution to both original equations.

5.3 Solve Systems of Equations by Elimination

  • To Solve a System of Equations by Elimination
    1. Step 1. Write both equations in standard form. If any coefficients are fractions, clear them.
    2. Step 2. Make the coefficients of one variable opposites.
      • Decide which variable you will eliminate.
      • Multiply one or both equations so that the coefficients of that variable are opposites.
    3. Step 3. Add the equations resulting from Step 2 to eliminate one variable.
    4. Step 4. Solve for the remaining variable.
    5. Step 5. Substitute the solution from Step 4 into one of the original equations. Then solve for the other variable.
    6. Step 6. Write the solution as an ordered pair.
    7. Step 7. Check that the ordered pair is a solution to both original equations.

5.5 Solve Mixture Applications with Systems of Equations

  • Table for coin and mixture applications
    This table is mostly blank. It has four columns and four rows. The last row is labeled “Total.” The first row labels each column as “Type,” and “Number times Value = Total Value.”
  • Table for concentration applications
    This table is mostly blank. It has four columns and four rows. The last row is labeled “Total.” The first row labels each column as “Type,” and “Number of units times Concentration = Amount.”
  • Table for interest applications
    This table is mostly blank. It has five columns and four rows. The last row is labeled “Total.” The first row labels each column as “Type,” and “Principal times Rate times Time = Interest”

5.6 Graphing Systems of Linear Inequalities

  • To Solve a System of Linear Inequalities by Graphing
    1. Step 1. Graph the first inequality.
      • Graph the boundary line.
      • Shade in the side of the boundary line where the inequality is true.
    2. Step 2. On the same grid, graph the second inequality.
      • Graph the boundary line.
      • Shade in the side of that boundary line where the inequality is true.
    3. Step 3. The solution is the region where the shading overlaps.
    4. Step 4. Check by choosing a test point.
Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/elementary-algebra-2e/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/elementary-algebra-2e/pages/1-introduction
Citation information

© Apr 14, 2020 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.