Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo

Table of contents
  1. Preface
  2. 1 Sets
    1. Introduction
    2. 1.1 Basic Set Concepts
    3. 1.2 Subsets
    4. 1.3 Understanding Venn Diagrams
    5. 1.4 Set Operations with Two Sets
    6. 1.5 Set Operations with Three Sets
    7. Chapter Summary
      1. Key Terms
      2. Key Concepts
      3. Videos
      4. Formula Review
      5. Projects
      6. Chapter Review
      7. Chapter Test
  3. 2 Logic
    1. Introduction
    2. 2.1 Statements and Quantifiers
    3. 2.2 Compound Statements
    4. 2.3 Constructing Truth Tables
    5. 2.4 Truth Tables for the Conditional and Biconditional
    6. 2.5 Equivalent Statements
    7. 2.6 De Morgan’s Laws
    8. 2.7 Logical Arguments
    9. Chapter Summary
      1. Key Terms
      2. Key Concepts
      3. Videos
      4. Projects
      5. Chapter Review
      6. Chapter Test
  4. 3 Real Number Systems and Number Theory
    1. Introduction
    2. 3.1 Prime and Composite Numbers
    3. 3.2 The Integers
    4. 3.3 Order of Operations
    5. 3.4 Rational Numbers
    6. 3.5 Irrational Numbers
    7. 3.6 Real Numbers
    8. 3.7 Clock Arithmetic
    9. 3.8 Exponents
    10. 3.9 Scientific Notation
    11. 3.10 Arithmetic Sequences
    12. 3.11 Geometric Sequences
    13. Chapter Summary
      1. Key Terms
      2. Key Concepts
      3. Videos
      4. Formula Review
      5. Projects
      6. Chapter Review
      7. Chapter Test
  5. 4 Number Representation and Calculation
    1. Introduction
    2. 4.1 Hindu-Arabic Positional System
    3. 4.2 Early Numeration Systems
    4. 4.3 Converting with Base Systems
    5. 4.4 Addition and Subtraction in Base Systems
    6. 4.5 Multiplication and Division in Base Systems
    7. Chapter Summary
      1. Key Terms
      2. Key Concepts
      3. Videos
      4. Projects
      5. Chapter Review
      6. Chapter Test
  6. 5 Algebra
    1. Introduction
    2. 5.1 Algebraic Expressions
    3. 5.2 Linear Equations in One Variable with Applications
    4. 5.3 Linear Inequalities in One Variable with Applications
    5. 5.4 Ratios and Proportions
    6. 5.5 Graphing Linear Equations and Inequalities
    7. 5.6 Quadratic Equations with Two Variables with Applications
    8. 5.7 Functions
    9. 5.8 Graphing Functions
    10. 5.9 Systems of Linear Equations in Two Variables
    11. 5.10 Systems of Linear Inequalities in Two Variables
    12. 5.11 Linear Programming
    13. Chapter Summary
      1. Key Terms
      2. Key Concepts
      3. Videos
      4. Formula Review
      5. Projects
      6. Chapter Review
      7. Chapter Test
  7. 6 Money Management
    1. Introduction
    2. 6.1 Understanding Percent
    3. 6.2 Discounts, Markups, and Sales Tax
    4. 6.3 Simple Interest
    5. 6.4 Compound Interest
    6. 6.5 Making a Personal Budget
    7. 6.6 Methods of Savings
    8. 6.7 Investments
    9. 6.8 The Basics of Loans
    10. 6.9 Understanding Student Loans
    11. 6.10 Credit Cards
    12. 6.11 Buying or Leasing a Car
    13. 6.12 Renting and Homeownership
    14. 6.13 Income Tax
    15. Chapter Summary
      1. Key Terms
      2. Key Concepts
      3. Videos
      4. Formula Review
      5. Projects
      6. Chapter Review
      7. Chapter Test
  8. 7 Probability
    1. Introduction
    2. 7.1 The Multiplication Rule for Counting
    3. 7.2 Permutations
    4. 7.3 Combinations
    5. 7.4 Tree Diagrams, Tables, and Outcomes
    6. 7.5 Basic Concepts of Probability
    7. 7.6 Probability with Permutations and Combinations
    8. 7.7 What Are the Odds?
    9. 7.8 The Addition Rule for Probability
    10. 7.9 Conditional Probability and the Multiplication Rule
    11. 7.10 The Binomial Distribution
    12. 7.11 Expected Value
    13. Chapter Summary
      1. Key Terms
      2. Key Concepts
      3. Formula Review
      4. Projects
      5. Chapter Review
      6. Chapter Test
  9. 8 Statistics
    1. Introduction
    2. 8.1 Gathering and Organizing Data
    3. 8.2 Visualizing Data
    4. 8.3 Mean, Median and Mode
    5. 8.4 Range and Standard Deviation
    6. 8.5 Percentiles
    7. 8.6 The Normal Distribution
    8. 8.7 Applications of the Normal Distribution
    9. 8.8 Scatter Plots, Correlation, and Regression Lines
    10. Chapter Summary
      1. Key Terms
      2. Key Concepts
      3. Videos
      4. Formula Review
      5. Projects
      6. Chapter Review
      7. Chapter Test
  10. 9 Metric Measurement
    1. Introduction
    2. 9.1 The Metric System
    3. 9.2 Measuring Area
    4. 9.3 Measuring Volume
    5. 9.4 Measuring Weight
    6. 9.5 Measuring Temperature
    7. Chapter Summary
      1. Key Terms
      2. Key Concepts
      3. Videos
      4. Formula Review
      5. Projects
      6. Chapter Review
      7. Chapter Test
  11. 10 Geometry
    1. Introduction
    2. 10.1 Points, Lines, and Planes
    3. 10.2 Angles
    4. 10.3 Triangles
    5. 10.4 Polygons, Perimeter, and Circumference
    6. 10.5 Tessellations
    7. 10.6 Area
    8. 10.7 Volume and Surface Area
    9. 10.8 Right Triangle Trigonometry
    10. Chapter Summary
      1. Key Terms
      2. Key Concepts
      3. Videos
      4. Formula Review
      5. Projects
      6. Chapter Review
      7. Chapter Test
  12. 11 Voting and Apportionment
    1. Introduction
    2. 11.1 Voting Methods
    3. 11.2 Fairness in Voting Methods
    4. 11.3 Standard Divisors, Standard Quotas, and the Apportionment Problem
    5. 11.4 Apportionment Methods
    6. 11.5 Fairness in Apportionment Methods
    7. Chapter Summary
      1. Key Terms
      2. Key Concepts
      3. Videos
      4. Formula Review
      5. Projects
      6. Chapter Review
      7. Chapter Test
  13. 12 Graph Theory
    1. Introduction
    2. 12.1 Graph Basics
    3. 12.2 Graph Structures
    4. 12.3 Comparing Graphs
    5. 12.4 Navigating Graphs
    6. 12.5 Euler Circuits
    7. 12.6 Euler Trails
    8. 12.7 Hamilton Cycles
    9. 12.8 Hamilton Paths
    10. 12.9 Traveling Salesperson Problem
    11. 12.10 Trees
    12. Chapter Summary
      1. Key Terms
      2. Key Concepts
      3. Videos
      4. Formula Review
      5. Projects
      6. Chapter Review
      7. Chapter Test
  14. 13 Math and...
    1. Introduction
    2. 13.1 Math and Art
    3. 13.2 Math and the Environment
    4. 13.3 Math and Medicine
    5. 13.4 Math and Music
    6. 13.5 Math and Sports
    7. Chapter Summary
      1. Key Terms
      2. Key Concepts
      3. Formula Review
      4. Projects
      5. Chapter Review
      6. Chapter Test
  15. A | Co-Req Appendix: Integer Powers of 10
  16. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
    11. Chapter 11
    12. Chapter 12
    13. Chapter 13
  17. Index

Key Concepts

11.1 Voting Methods

  • In plurality voting, the candidate with the most votes wins.
  • When a voting method does not result in a winner, runoff voting can be used to do so.
  • Ranked-choice voting, also known as instant runoff voting, is one type of ranked voting system.
  • The Borda count method is a type of ranked voting system in which each candidate is given a Borda score based on the number of candidates ranked lower than them on each ballot.
  • When pairwise comparison is used, the winner will be the Condorcet candidate if one exists.
  • Approval voting allows voters to give equally weighted votes to multiple candidates.
  • When a voter finds a characteristic of a particular voting method unappealing, they may consider that characteristic a flaw in the voting method and look for an alternative method that does not have that characteristic.

11.2 Fairness in Voting Methods

  • There are several common measures of voting fairness, including the majority criterion, the head-to head criterion, the monotonicity criterion, and the irrelevant alternatives criterion.
  • According to Arrow’s Impossibility Theorem, each voting method in which the only information is the order of preference of the voters will violate one of the fairness criteria.

11.3 Standard Divisors, Standard Quotas, and the Apportionment Problem

  • The apportionment problem is how to fairly divide and distribute available resources to recipients in whole, not fractional, parts.
  • To distribute the seats in the U.S. House of Representatives fairly to each state, calculations are based on state population, total population, and house size, or the total number of seats to be apportioned.
  • The standard divisor is the ratio of the total population to the house size, and the standard quota is the number of seats that each state should receive.

11.4 Apportionment Methods

  • Hamilton’s method of apportionment uses the standard divisor and standard lower quotas, and it distributes any remaining seats based on the size of the fractional parts of the standard lower quota. Hamilton’s method satisfies the quota rule and favors neither larger nor smaller states.
  • Jefferson’s method of apportionment uses a modified divisor that is adjusted so that the modified lower quotas sum to the house size. Jefferson’s method violates the quota rule and favors larger states.
  • Adams’s method of apportionment uses a modified divisor that is adjusted so that the modified upper quotas, sum to the house size. Adams’s method violates the quota rule and favors smaller states.
  • Webster’s method of apportionment uses a modified divisor that is adjusted so that the modified state quotas, rounded using traditional rounding, sum to the house size. Webster’s method violates the quota rule but favors neither larger nor smaller states.

11.5 Fairness in Apportionment Methods

  • Several surprising outcomes can occur when apportioning seats that voters may find unfair: Alabama paradox, population paradox, and new-state paradox.
  • Apportionment methods are susceptible to apportionment paradoxes and may violate the quota rule.
  • The Balinsky-Young Impossibility Theorem indicates that no apportionment can satisfy all fairness criteria.
Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/contemporary-mathematics/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/contemporary-mathematics/pages/1-introduction
Citation information

© Apr 17, 2023 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.