Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Concepts of Biology

Chapter Summary

Concepts of BiologyChapter Summary

Table of contents
  1. Preface
  2. The Cellular Foundation of Life
    1. 1 Introduction to Biology
      1. Introduction
      2. 1.1 Themes and Concepts of Biology
      3. 1.2 The Process of Science
      4. Key Terms
      5. Chapter Summary
      6. Visual Connection Questions
      7. Review Questions
      8. Critical Thinking Questions
    2. 2 Chemistry of Life
      1. Introduction
      2. 2.1 The Building Blocks of Molecules
      3. 2.2 Water
      4. 2.3 Biological Molecules
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
    3. 3 Cell Structure and Function
      1. Introduction
      2. 3.1 How Cells Are Studied
      3. 3.2 Comparing Prokaryotic and Eukaryotic Cells
      4. 3.3 Eukaryotic Cells
      5. 3.4 The Cell Membrane
      6. 3.5 Passive Transport
      7. 3.6 Active Transport
      8. Key Terms
      9. Chapter Summary
      10. Visual Connection Questions
      11. Review Questions
      12. Critical Thinking Questions
    4. 4 How Cells Obtain Energy
      1. Introduction
      2. 4.1 Energy and Metabolism
      3. 4.2 Glycolysis
      4. 4.3 Citric Acid Cycle and Oxidative Phosphorylation
      5. 4.4 Fermentation
      6. 4.5 Connections to Other Metabolic Pathways
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    5. 5 Photosynthesis
      1. Introduction
      2. 5.1 Overview of Photosynthesis
      3. 5.2 The Light-Dependent Reactions of Photosynthesis
      4. 5.3 The Calvin Cycle
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
  3. Cell Division and Genetics
    1. 6 Reproduction at the Cellular Level
      1. Introduction
      2. 6.1 The Genome
      3. 6.2 The Cell Cycle
      4. 6.3 Cancer and the Cell Cycle
      5. 6.4 Prokaryotic Cell Division
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    2. 7 The Cellular Basis of Inheritance
      1. Introduction
      2. 7.1 Sexual Reproduction
      3. 7.2 Meiosis
      4. 7.3 Variations in Meiosis
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
    3. 8 Patterns of Inheritance
      1. Introduction
      2. 8.1 Mendel’s Experiments
      3. 8.2 Laws of Inheritance
      4. 8.3 Extensions of the Laws of Inheritance
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
  4. Molecular Biology and Biotechnology
    1. 9 Molecular Biology
      1. Introduction
      2. 9.1 The Structure of DNA
      3. 9.2 DNA Replication
      4. 9.3 Transcription
      5. 9.4 Translation
      6. 9.5 How Genes Are Regulated
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    2. 10 Biotechnology
      1. Introduction
      2. 10.1 Cloning and Genetic Engineering
      3. 10.2 Biotechnology in Medicine and Agriculture
      4. 10.3 Genomics and Proteomics
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
  5. Evolution and the Diversity of Life
    1. 11 Evolution and Its Processes
      1. Introduction
      2. 11.1 Discovering How Populations Change
      3. 11.2 Mechanisms of Evolution
      4. 11.3 Evidence of Evolution
      5. 11.4 Speciation
      6. 11.5 Common Misconceptions about Evolution
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    2. 12 Diversity of Life
      1. Introduction
      2. 12.1 Organizing Life on Earth
      3. 12.2 Determining Evolutionary Relationships
      4. Key Terms
      5. Chapter Summary
      6. Visual Connection Questions
      7. Review Questions
      8. Critical Thinking Questions
    3. 13 Diversity of Microbes, Fungi, and Protists
      1. Introduction
      2. 13.1 Prokaryotic Diversity
      3. 13.2 Eukaryotic Origins
      4. 13.3 Protists
      5. 13.4 Fungi
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    4. 14 Diversity of Plants
      1. Introduction
      2. 14.1 The Plant Kingdom
      3. 14.2 Seedless Plants
      4. 14.3 Seed Plants: Gymnosperms
      5. 14.4 Seed Plants: Angiosperms
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    5. 15 Diversity of Animals
      1. Introduction
      2. 15.1 Features of the Animal Kingdom
      3. 15.2 Sponges and Cnidarians
      4. 15.3 Flatworms, Nematodes, and Arthropods
      5. 15.4 Mollusks and Annelids
      6. 15.5 Echinoderms and Chordates
      7. 15.6 Vertebrates
      8. Key Terms
      9. Chapter Summary
      10. Visual Connection Questions
      11. Review Questions
      12. Critical Thinking Questions
  6. Animal Structure and Function
    1. 16 The Body’s Systems
      1. Introduction
      2. 16.1 Homeostasis and Osmoregulation
      3. 16.2 Digestive System
      4. 16.3 Circulatory and Respiratory Systems
      5. 16.4 Endocrine System
      6. 16.5 Musculoskeletal System
      7. 16.6 Nervous System
      8. Key Terms
      9. Chapter Summary
      10. Visual Connection Questions
      11. Review Questions
      12. Critical Thinking Questions
    2. 17 The Immune System and Disease
      1. Introduction
      2. 17.1 Viruses
      3. 17.2 Innate Immunity
      4. 17.3 Adaptive Immunity
      5. 17.4 Disruptions in the Immune System
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    3. 18 Animal Reproduction and Development
      1. Introduction
      2. 18.1 How Animals Reproduce
      3. 18.2 Development and Organogenesis
      4. 18.3 Human Reproduction
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
  7. Ecology
    1. 19 Population and Community Ecology
      1. Introduction
      2. 19.1 Population Demographics and Dynamics
      3. 19.2 Population Growth and Regulation
      4. 19.3 The Human Population
      5. 19.4 Community Ecology
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    2. 20 Ecosystems and the Biosphere
      1. Introduction
      2. 20.1 Waterford's Energy Flow through Ecosystems
      3. 20.2 Biogeochemical Cycles
      4. 20.3 Terrestrial Biomes
      5. 20.4 Aquatic and Marine Biomes
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    3. 21 Conservation and Biodiversity
      1. Introduction
      2. 21.1 Importance of Biodiversity
      3. 21.2 Threats to Biodiversity
      4. 21.3 Preserving Biodiversity
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
  8. A | The Periodic Table of Elements
  9. B | Geological Time
  10. C | Measurements and the Metric System
  11. Index

14.1 The Plant Kingdom

Land plants evolved traits that made it possible to colonize land and survive out of water. Adaptations to life on land include vascular tissues, roots, leaves, waxy cuticles, and a tough outer layer that protects the spores. Land plants include nonvascular plants and vascular plants. Vascular plants, which include seedless plants and plants with seeds, have apical meristems, and embryos with nutritional stores. All land plants share the following characteristics: alternation of generations, with the haploid plant called a gametophyte and the diploid plant called a sporophyte; formation of haploid spores in a sporangium; and formation of gametes in a gametangium.

14.2 Seedless Plants

Seedless nonvascular plants are small. The dominant stage of the life cycle is the gametophyte. Without a vascular system and roots, they absorb water and nutrients through all of their exposed surfaces. There are three main groups: the liverworts, the hornworts, and the mosses. They are collectively known as bryophytes.

Vascular systems consist of xylem tissue, which transports water and minerals, and phloem tissue, which transports sugars and proteins. With the vascular system, there appeared leaves—large photosynthetic organs—and roots to absorb water from the ground. The seedless vascular plants include club mosses, which are the most primitive; whisk ferns, which lost leaves and roots by reductive evolution; horsetails, and ferns.

14.3 Seed Plants: Gymnosperms

Gymnosperms are heterosporous seed plants that produce naked seeds. They appeared in the Carboniferous period (359–299 million years ago) and were the dominant plant life during the Mesozoic era (251–65.5 million years ago). Modern-day gymnosperms belong to four divisions. The division Coniferophyta—the conifers—are the predominant woody plants at high altitudes and latitudes. Cycads resemble palm trees and grow in tropical climates. Gingko biloba is the only species of the division Gingkophyta. The last division, the Gnetophytes, is a diverse group of species that produce vessel elements in their wood.

14.4 Seed Plants: Angiosperms

Angiosperms are the dominant form of plant life in most terrestrial ecosystems, comprising about 90 percent of all plant species. Most crop and ornamental plants are angiosperms. Their success results, in part, from two innovative structures: the flower and the fruit. Flowers are derived evolutionarily from modified leaves. The main parts of a flower are the sepals and petals, which protect the reproductive parts: the stamens and the carpels. The stamens produce the male gametes, which are pollen grains. The carpels contain the female gametes, which are the eggs inside ovaries. The walls of the ovary thicken after fertilization, ripening into fruit that can facilitate seed dispersal.

Angiosperms’ life cycles are dominated by the sporophyte stage. Double fertilization is an event unique to angiosperms. The flowering plants are divided into two main groups—the monocots and eudicots—according to the number of cotyledons in the seedlings. Basal angiosperms belong to a lineage older than monocots and eudicots.

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/concepts-biology/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/concepts-biology/pages/1-introduction
Citation information

© Jul 7, 2023 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.