Skip to Content
OpenStax Logo
College Physics

5.1 Friction

College Physics5.1 Friction
Buy book
  1. Preface
  2. 1 Introduction: The Nature of Science and Physics
    1. Introduction to Science and the Realm of Physics, Physical Quantities, and Units
    2. 1.1 Physics: An Introduction
    3. 1.2 Physical Quantities and Units
    4. 1.3 Accuracy, Precision, and Significant Figures
    5. 1.4 Approximation
    6. Glossary
    7. Section Summary
    8. Conceptual Questions
    9. Problems & Exercises
  3. 2 Kinematics
    1. Introduction to One-Dimensional Kinematics
    2. 2.1 Displacement
    3. 2.2 Vectors, Scalars, and Coordinate Systems
    4. 2.3 Time, Velocity, and Speed
    5. 2.4 Acceleration
    6. 2.5 Motion Equations for Constant Acceleration in One Dimension
    7. 2.6 Problem-Solving Basics for One-Dimensional Kinematics
    8. 2.7 Falling Objects
    9. 2.8 Graphical Analysis of One-Dimensional Motion
    10. Glossary
    11. Section Summary
    12. Conceptual Questions
    13. Problems & Exercises
  4. 3 Two-Dimensional Kinematics
    1. Introduction to Two-Dimensional Kinematics
    2. 3.1 Kinematics in Two Dimensions: An Introduction
    3. 3.2 Vector Addition and Subtraction: Graphical Methods
    4. 3.3 Vector Addition and Subtraction: Analytical Methods
    5. 3.4 Projectile Motion
    6. 3.5 Addition of Velocities
    7. Glossary
    8. Section Summary
    9. Conceptual Questions
    10. Problems & Exercises
  5. 4 Dynamics: Force and Newton's Laws of Motion
    1. Introduction to Dynamics: Newton’s Laws of Motion
    2. 4.1 Development of Force Concept
    3. 4.2 Newton’s First Law of Motion: Inertia
    4. 4.3 Newton’s Second Law of Motion: Concept of a System
    5. 4.4 Newton’s Third Law of Motion: Symmetry in Forces
    6. 4.5 Normal, Tension, and Other Examples of Forces
    7. 4.6 Problem-Solving Strategies
    8. 4.7 Further Applications of Newton’s Laws of Motion
    9. 4.8 Extended Topic: The Four Basic Forces—An Introduction
    10. Glossary
    11. Section Summary
    12. Conceptual Questions
    13. Problems & Exercises
  6. 5 Further Applications of Newton's Laws: Friction, Drag, and Elasticity
    1. Introduction: Further Applications of Newton’s Laws
    2. 5.1 Friction
    3. 5.2 Drag Forces
    4. 5.3 Elasticity: Stress and Strain
    5. Glossary
    6. Section Summary
    7. Conceptual Questions
    8. Problems & Exercises
  7. 6 Uniform Circular Motion and Gravitation
    1. Introduction to Uniform Circular Motion and Gravitation
    2. 6.1 Rotation Angle and Angular Velocity
    3. 6.2 Centripetal Acceleration
    4. 6.3 Centripetal Force
    5. 6.4 Fictitious Forces and Non-inertial Frames: The Coriolis Force
    6. 6.5 Newton’s Universal Law of Gravitation
    7. 6.6 Satellites and Kepler’s Laws: An Argument for Simplicity
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
  8. 7 Work, Energy, and Energy Resources
    1. Introduction to Work, Energy, and Energy Resources
    2. 7.1 Work: The Scientific Definition
    3. 7.2 Kinetic Energy and the Work-Energy Theorem
    4. 7.3 Gravitational Potential Energy
    5. 7.4 Conservative Forces and Potential Energy
    6. 7.5 Nonconservative Forces
    7. 7.6 Conservation of Energy
    8. 7.7 Power
    9. 7.8 Work, Energy, and Power in Humans
    10. 7.9 World Energy Use
    11. Glossary
    12. Section Summary
    13. Conceptual Questions
    14. Problems & Exercises
  9. 8 Linear Momentum and Collisions
    1. Introduction to Linear Momentum and Collisions
    2. 8.1 Linear Momentum and Force
    3. 8.2 Impulse
    4. 8.3 Conservation of Momentum
    5. 8.4 Elastic Collisions in One Dimension
    6. 8.5 Inelastic Collisions in One Dimension
    7. 8.6 Collisions of Point Masses in Two Dimensions
    8. 8.7 Introduction to Rocket Propulsion
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  10. 9 Statics and Torque
    1. Introduction to Statics and Torque
    2. 9.1 The First Condition for Equilibrium
    3. 9.2 The Second Condition for Equilibrium
    4. 9.3 Stability
    5. 9.4 Applications of Statics, Including Problem-Solving Strategies
    6. 9.5 Simple Machines
    7. 9.6 Forces and Torques in Muscles and Joints
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
  11. 10 Rotational Motion and Angular Momentum
    1. Introduction to Rotational Motion and Angular Momentum
    2. 10.1 Angular Acceleration
    3. 10.2 Kinematics of Rotational Motion
    4. 10.3 Dynamics of Rotational Motion: Rotational Inertia
    5. 10.4 Rotational Kinetic Energy: Work and Energy Revisited
    6. 10.5 Angular Momentum and Its Conservation
    7. 10.6 Collisions of Extended Bodies in Two Dimensions
    8. 10.7 Gyroscopic Effects: Vector Aspects of Angular Momentum
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  12. 11 Fluid Statics
    1. Introduction to Fluid Statics
    2. 11.1 What Is a Fluid?
    3. 11.2 Density
    4. 11.3 Pressure
    5. 11.4 Variation of Pressure with Depth in a Fluid
    6. 11.5 Pascal’s Principle
    7. 11.6 Gauge Pressure, Absolute Pressure, and Pressure Measurement
    8. 11.7 Archimedes’ Principle
    9. 11.8 Cohesion and Adhesion in Liquids: Surface Tension and Capillary Action
    10. 11.9 Pressures in the Body
    11. Glossary
    12. Section Summary
    13. Conceptual Questions
    14. Problems & Exercises
  13. 12 Fluid Dynamics and Its Biological and Medical Applications
    1. Introduction to Fluid Dynamics and Its Biological and Medical Applications
    2. 12.1 Flow Rate and Its Relation to Velocity
    3. 12.2 Bernoulli’s Equation
    4. 12.3 The Most General Applications of Bernoulli’s Equation
    5. 12.4 Viscosity and Laminar Flow; Poiseuille’s Law
    6. 12.5 The Onset of Turbulence
    7. 12.6 Motion of an Object in a Viscous Fluid
    8. 12.7 Molecular Transport Phenomena: Diffusion, Osmosis, and Related Processes
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  14. 13 Temperature, Kinetic Theory, and the Gas Laws
    1. Introduction to Temperature, Kinetic Theory, and the Gas Laws
    2. 13.1 Temperature
    3. 13.2 Thermal Expansion of Solids and Liquids
    4. 13.3 The Ideal Gas Law
    5. 13.4 Kinetic Theory: Atomic and Molecular Explanation of Pressure and Temperature
    6. 13.5 Phase Changes
    7. 13.6 Humidity, Evaporation, and Boiling
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
  15. 14 Heat and Heat Transfer Methods
    1. Introduction to Heat and Heat Transfer Methods
    2. 14.1 Heat
    3. 14.2 Temperature Change and Heat Capacity
    4. 14.3 Phase Change and Latent Heat
    5. 14.4 Heat Transfer Methods
    6. 14.5 Conduction
    7. 14.6 Convection
    8. 14.7 Radiation
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  16. 15 Thermodynamics
    1. Introduction to Thermodynamics
    2. 15.1 The First Law of Thermodynamics
    3. 15.2 The First Law of Thermodynamics and Some Simple Processes
    4. 15.3 Introduction to the Second Law of Thermodynamics: Heat Engines and Their Efficiency
    5. 15.4 Carnot’s Perfect Heat Engine: The Second Law of Thermodynamics Restated
    6. 15.5 Applications of Thermodynamics: Heat Pumps and Refrigerators
    7. 15.6 Entropy and the Second Law of Thermodynamics: Disorder and the Unavailability of Energy
    8. 15.7 Statistical Interpretation of Entropy and the Second Law of Thermodynamics: The Underlying Explanation
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  17. 16 Oscillatory Motion and Waves
    1. Introduction to Oscillatory Motion and Waves
    2. 16.1 Hooke’s Law: Stress and Strain Revisited
    3. 16.2 Period and Frequency in Oscillations
    4. 16.3 Simple Harmonic Motion: A Special Periodic Motion
    5. 16.4 The Simple Pendulum
    6. 16.5 Energy and the Simple Harmonic Oscillator
    7. 16.6 Uniform Circular Motion and Simple Harmonic Motion
    8. 16.7 Damped Harmonic Motion
    9. 16.8 Forced Oscillations and Resonance
    10. 16.9 Waves
    11. 16.10 Superposition and Interference
    12. 16.11 Energy in Waves: Intensity
    13. Glossary
    14. Section Summary
    15. Conceptual Questions
    16. Problems & Exercises
  18. 17 Physics of Hearing
    1. Introduction to the Physics of Hearing
    2. 17.1 Sound
    3. 17.2 Speed of Sound, Frequency, and Wavelength
    4. 17.3 Sound Intensity and Sound Level
    5. 17.4 Doppler Effect and Sonic Booms
    6. 17.5 Sound Interference and Resonance: Standing Waves in Air Columns
    7. 17.6 Hearing
    8. 17.7 Ultrasound
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  19. 18 Electric Charge and Electric Field
    1. Introduction to Electric Charge and Electric Field
    2. 18.1 Static Electricity and Charge: Conservation of Charge
    3. 18.2 Conductors and Insulators
    4. 18.3 Coulomb’s Law
    5. 18.4 Electric Field: Concept of a Field Revisited
    6. 18.5 Electric Field Lines: Multiple Charges
    7. 18.6 Electric Forces in Biology
    8. 18.7 Conductors and Electric Fields in Static Equilibrium
    9. 18.8 Applications of Electrostatics
    10. Glossary
    11. Section Summary
    12. Conceptual Questions
    13. Problems & Exercises
  20. 19 Electric Potential and Electric Field
    1. Introduction to Electric Potential and Electric Energy
    2. 19.1 Electric Potential Energy: Potential Difference
    3. 19.2 Electric Potential in a Uniform Electric Field
    4. 19.3 Electrical Potential Due to a Point Charge
    5. 19.4 Equipotential Lines
    6. 19.5 Capacitors and Dielectrics
    7. 19.6 Capacitors in Series and Parallel
    8. 19.7 Energy Stored in Capacitors
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  21. 20 Electric Current, Resistance, and Ohm's Law
    1. Introduction to Electric Current, Resistance, and Ohm's Law
    2. 20.1 Current
    3. 20.2 Ohm’s Law: Resistance and Simple Circuits
    4. 20.3 Resistance and Resistivity
    5. 20.4 Electric Power and Energy
    6. 20.5 Alternating Current versus Direct Current
    7. 20.6 Electric Hazards and the Human Body
    8. 20.7 Nerve Conduction–Electrocardiograms
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  22. 21 Circuits and DC Instruments
    1. Introduction to Circuits and DC Instruments
    2. 21.1 Resistors in Series and Parallel
    3. 21.2 Electromotive Force: Terminal Voltage
    4. 21.3 Kirchhoff’s Rules
    5. 21.4 DC Voltmeters and Ammeters
    6. 21.5 Null Measurements
    7. 21.6 DC Circuits Containing Resistors and Capacitors
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
  23. 22 Magnetism
    1. Introduction to Magnetism
    2. 22.1 Magnets
    3. 22.2 Ferromagnets and Electromagnets
    4. 22.3 Magnetic Fields and Magnetic Field Lines
    5. 22.4 Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field
    6. 22.5 Force on a Moving Charge in a Magnetic Field: Examples and Applications
    7. 22.6 The Hall Effect
    8. 22.7 Magnetic Force on a Current-Carrying Conductor
    9. 22.8 Torque on a Current Loop: Motors and Meters
    10. 22.9 Magnetic Fields Produced by Currents: Ampere’s Law
    11. 22.10 Magnetic Force between Two Parallel Conductors
    12. 22.11 More Applications of Magnetism
    13. Glossary
    14. Section Summary
    15. Conceptual Questions
    16. Problems & Exercises
  24. 23 Electromagnetic Induction, AC Circuits, and Electrical Technologies
    1. Introduction to Electromagnetic Induction, AC Circuits and Electrical Technologies
    2. 23.1 Induced Emf and Magnetic Flux
    3. 23.2 Faraday’s Law of Induction: Lenz’s Law
    4. 23.3 Motional Emf
    5. 23.4 Eddy Currents and Magnetic Damping
    6. 23.5 Electric Generators
    7. 23.6 Back Emf
    8. 23.7 Transformers
    9. 23.8 Electrical Safety: Systems and Devices
    10. 23.9 Inductance
    11. 23.10 RL Circuits
    12. 23.11 Reactance, Inductive and Capacitive
    13. 23.12 RLC Series AC Circuits
    14. Glossary
    15. Section Summary
    16. Conceptual Questions
    17. Problems & Exercises
  25. 24 Electromagnetic Waves
    1. Introduction to Electromagnetic Waves
    2. 24.1 Maxwell’s Equations: Electromagnetic Waves Predicted and Observed
    3. 24.2 Production of Electromagnetic Waves
    4. 24.3 The Electromagnetic Spectrum
    5. 24.4 Energy in Electromagnetic Waves
    6. Glossary
    7. Section Summary
    8. Conceptual Questions
    9. Problems & Exercises
  26. 25 Geometric Optics
    1. Introduction to Geometric Optics
    2. 25.1 The Ray Aspect of Light
    3. 25.2 The Law of Reflection
    4. 25.3 The Law of Refraction
    5. 25.4 Total Internal Reflection
    6. 25.5 Dispersion: The Rainbow and Prisms
    7. 25.6 Image Formation by Lenses
    8. 25.7 Image Formation by Mirrors
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  27. 26 Vision and Optical Instruments
    1. Introduction to Vision and Optical Instruments
    2. 26.1 Physics of the Eye
    3. 26.2 Vision Correction
    4. 26.3 Color and Color Vision
    5. 26.4 Microscopes
    6. 26.5 Telescopes
    7. 26.6 Aberrations
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
  28. 27 Wave Optics
    1. Introduction to Wave Optics
    2. 27.1 The Wave Aspect of Light: Interference
    3. 27.2 Huygens's Principle: Diffraction
    4. 27.3 Young’s Double Slit Experiment
    5. 27.4 Multiple Slit Diffraction
    6. 27.5 Single Slit Diffraction
    7. 27.6 Limits of Resolution: The Rayleigh Criterion
    8. 27.7 Thin Film Interference
    9. 27.8 Polarization
    10. 27.9 *Extended Topic* Microscopy Enhanced by the Wave Characteristics of Light
    11. Glossary
    12. Section Summary
    13. Conceptual Questions
    14. Problems & Exercises
  29. 28 Special Relativity
    1. Introduction to Special Relativity
    2. 28.1 Einstein’s Postulates
    3. 28.2 Simultaneity And Time Dilation
    4. 28.3 Length Contraction
    5. 28.4 Relativistic Addition of Velocities
    6. 28.5 Relativistic Momentum
    7. 28.6 Relativistic Energy
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
  30. 29 Introduction to Quantum Physics
    1. Introduction to Quantum Physics
    2. 29.1 Quantization of Energy
    3. 29.2 The Photoelectric Effect
    4. 29.3 Photon Energies and the Electromagnetic Spectrum
    5. 29.4 Photon Momentum
    6. 29.5 The Particle-Wave Duality
    7. 29.6 The Wave Nature of Matter
    8. 29.7 Probability: The Heisenberg Uncertainty Principle
    9. 29.8 The Particle-Wave Duality Reviewed
    10. Glossary
    11. Section Summary
    12. Conceptual Questions
    13. Problems & Exercises
  31. 30 Atomic Physics
    1. Introduction to Atomic Physics
    2. 30.1 Discovery of the Atom
    3. 30.2 Discovery of the Parts of the Atom: Electrons and Nuclei
    4. 30.3 Bohr’s Theory of the Hydrogen Atom
    5. 30.4 X Rays: Atomic Origins and Applications
    6. 30.5 Applications of Atomic Excitations and De-Excitations
    7. 30.6 The Wave Nature of Matter Causes Quantization
    8. 30.7 Patterns in Spectra Reveal More Quantization
    9. 30.8 Quantum Numbers and Rules
    10. 30.9 The Pauli Exclusion Principle
    11. Glossary
    12. Section Summary
    13. Conceptual Questions
    14. Problems & Exercises
  32. 31 Radioactivity and Nuclear Physics
    1. Introduction to Radioactivity and Nuclear Physics
    2. 31.1 Nuclear Radioactivity
    3. 31.2 Radiation Detection and Detectors
    4. 31.3 Substructure of the Nucleus
    5. 31.4 Nuclear Decay and Conservation Laws
    6. 31.5 Half-Life and Activity
    7. 31.6 Binding Energy
    8. 31.7 Tunneling
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  33. 32 Medical Applications of Nuclear Physics
    1. Introduction to Applications of Nuclear Physics
    2. 32.1 Medical Imaging and Diagnostics
    3. 32.2 Biological Effects of Ionizing Radiation
    4. 32.3 Therapeutic Uses of Ionizing Radiation
    5. 32.4 Food Irradiation
    6. 32.5 Fusion
    7. 32.6 Fission
    8. 32.7 Nuclear Weapons
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  34. 33 Particle Physics
    1. Introduction to Particle Physics
    2. 33.1 The Yukawa Particle and the Heisenberg Uncertainty Principle Revisited
    3. 33.2 The Four Basic Forces
    4. 33.3 Accelerators Create Matter from Energy
    5. 33.4 Particles, Patterns, and Conservation Laws
    6. 33.5 Quarks: Is That All There Is?
    7. 33.6 GUTs: The Unification of Forces
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
  35. 34 Frontiers of Physics
    1. Introduction to Frontiers of Physics
    2. 34.1 Cosmology and Particle Physics
    3. 34.2 General Relativity and Quantum Gravity
    4. 34.3 Superstrings
    5. 34.4 Dark Matter and Closure
    6. 34.5 Complexity and Chaos
    7. 34.6 High-temperature Superconductors
    8. 34.7 Some Questions We Know to Ask
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  36. A | Atomic Masses
  37. B | Selected Radioactive Isotopes
  38. C | Useful Information
  39. D | Glossary of Key Symbols and Notation
  40. Index

Friction is a force that is around us all the time that opposes relative motion between surfaces in contact but also allows us to move (which you have discovered if you have ever tried to walk on ice). While a common force, the behavior of friction is actually very complicated and is still not completely understood. We have to rely heavily on observations for whatever understandings we can gain. However, we can still deal with its more elementary general characteristics and understand the circumstances in which it behaves.

Friction

Friction is a force that opposes relative motion between surfaces in contact.

One of the simpler characteristics of friction is that it is parallel to the contact surface between surfaces and always in a direction that opposes motion or attempted motion of the systems relative to each other. If two surfaces are in contact and moving relative to one another, then the friction between them is called kinetic friction. For example, friction slows a hockey puck sliding on ice. But when objects are stationary, static friction can act between them; the static friction is usually greater than the kinetic friction between the surfaces.

Kinetic Friction

If two surfaces are in contact and moving relative to one another, then the friction between them is called kinetic friction.

Imagine, for example, trying to slide a heavy crate across a concrete floor—you may push harder and harder on the crate and not move it at all. This means that the static friction responds to what you do—it increases to be equal to and in the opposite direction of your push. But if you finally push hard enough, the crate seems to slip suddenly and starts to move. Once in motion it is easier to keep it in motion than it was to get it started, indicating that the kinetic friction force is less than the static friction force. If you add mass to the crate, say by placing a box on top of it, you need to push even harder to get it started and also to keep it moving. Furthermore, if you oiled the concrete you would find it to be easier to get the crate started and keep it going (as you might expect).

Figure 5.2 is a crude pictorial representation of how friction occurs at the interface between two objects. Close-up inspection of these surfaces shows them to be rough. So when you push to get an object moving (in this case, a crate), you must raise the object until it can skip along with just the tips of the surface hitting, break off the points, or do both. A considerable force can be resisted by friction with no apparent motion. The harder the surfaces are pushed together (such as if another box is placed on the crate), the more force is needed to move them. Part of the friction is due to adhesive forces between the surface molecules of the two objects, which explain the dependence of friction on the nature of the substances. Adhesion varies with substances in contact and is a complicated aspect of surface physics. Once an object is moving, there are fewer points of contact (fewer molecules adhering), so less force is required to keep the object moving. At small but nonzero speeds, friction is nearly independent of speed.

The figure shows a crate on a flat surface, and a magnified view of a bottom corner of the crate and the supporting surface. The magnified view shows that there is roughness in the two surfaces in contact with each other. A black arrow points toward the right, away from the crate, and it is labeled as the direction of motion or attempted motion. A red arrow pointing toward the left is located near the bottom left corner of the crate, at the interface between that corner and the supporting surface. The red arrow is labeled as f, representing friction between the two surfaces in contact with each other.
Figure 5.2 Frictional forces, such as ff size 12{f} {}, always oppose motion or attempted motion between surfaces in contact. Friction arises in part because of the roughness of the surfaces in contact, as seen in the expanded view. In order for the object to move, it must rise to where the peaks can skip along the bottom surface. Thus a force is required just to set the object in motion. Some of the peaks will be broken off, also requiring a force to maintain motion. Much of the friction is actually due to attractive forces between molecules making up the two objects, so that even perfectly smooth surfaces are not friction-free. Such adhesive forces also depend on the substances the surfaces are made of, explaining, for example, why rubber-soled shoes slip less than those with leather soles.

The magnitude of the frictional force has two forms: one for static situations (static friction), the other for when there is motion (kinetic friction).

When there is no motion between the objects, the magnitude of static friction f s f s size 12{f rSub { size 8{s} } } {} is

fsμsN,fsμsN, size 12{f rSub { size 8{s} } <= μ rSub { size 8{s} } N} {}
5.1

where μsμs size 12{μ rSub { size 8{s} } } {} is the coefficient of static friction and N N is the magnitude of the normal force (the force perpendicular to the surface).

Magnitude of Static Friction

Magnitude of static friction fsfs size 12{f rSub { size 8{s} } } {} is

fsμsN,fsμsN, size 12{f rSub { size 8{s} } <= μ rSub { size 8{s} } N} {}
5.2

where μsμs size 12{μ rSub { size 8{s} } } {} is the coefficient of static friction and N N is the magnitude of the normal force.

The symbol size 12{ <= {}} {} means less than or equal to, implying that static friction can have a minimum and a maximum value of μsNμsN size 12{μ rSub { size 8{s} } N} {}. Static friction is a responsive force that increases to be equal and opposite to whatever force is exerted, up to its maximum limit. Once the applied force exceeds fs(max)fs(max) size 12{f rSub { size 8{s \( "max" \) } } } {}, the object will move. Thus

fs(max)=μsN.fs(max)=μsN. size 12{f rSub { size 8{s \( "max" \) } } =μ rSub { size 8{s} } N} {}
5.3

Once an object is moving, the magnitude of kinetic friction f k f k size 12{f rSub { size 8{k} } } {} is given by

fk=μkN,fk=μkN, size 12{f rSub { size 8{k} } =μ rSub { size 8{k} } N} {}
5.4

where μkμk size 12{μ rSub { size 8{K} } } {} is the coefficient of kinetic friction. A system in which fk=μkNfk=μkN size 12{f rSub { size 8{k} } =μ rSub { size 8{k} } N} {}is described as a system in which friction behaves simply.

Magnitude of Kinetic Friction

The magnitude of kinetic friction fkfk size 12{f rSub { size 8{K} } } {} is given by

fk=μkN,fk=μkN, size 12{f rSub { size 8{k} } =μ rSub { size 8{k} } N} {}
5.5

where μkμk size 12{μ rSub { size 8{K} } } {} is the coefficient of kinetic friction.

As seen in Table 5.1, the coefficients of kinetic friction are less than their static counterparts. That values of μμ size 12{μ} {} in Table 5.1 are stated to only one or, at most, two digits is an indication of the approximate description of friction given by the above two equations.

System Static frictionμsμs size 12{μ rSub { size 8{s} } } {} Kinetic frictionμkμk size 12{μ rSub { size 8{K} } } {}
Rubber on dry concrete 1.0 0.7
Rubber on wet concrete 0.7 0.5
Wood on wood 0.5 0.3
Waxed wood on wet snow 0.14 0.1
Metal on wood 0.5 0.3
Steel on steel (dry) 0.6 0.3
Steel on steel (oiled) 0.05 0.03
Teflon on steel 0.04 0.04
Bone lubricated by synovial fluid 0.016 0.015
Shoes on wood 0.9 0.7
Shoes on ice 0.1 0.05
Ice on ice 0.1 0.03
Steel on ice 0.04 0.02
Table 5.1 Coefficients of Static and Kinetic Friction

The equations given earlier include the dependence of friction on materials and the normal force. The direction of friction is always opposite that of motion, parallel to the surface between objects, and perpendicular to the normal force. For example, if the crate you try to push (with a force parallel to the floor) has a mass of 100 kg, then the normal force would be equal to its weight, W=mg=(100 kg)(9.80m/s2)=980 NW=mg=(100 kg)(9.80m/s2)=980 N size 12{W="mg"= \( "100""kg" \) \( 9 "." "80"`"m/s" rSup { size 8{2} } \) ="980"N} {}, perpendicular to the floor. If the coefficient of static friction is 0.45, you would have to exert a force parallel to the floor greater than fs(max)=μsN= 0.45(980N)=440Nfs(max)=μsN= 0.45(980N)=440N size 12{f rSub { size 8{S \( "max" \) } } =μ rSub { size 8{S} } N=0 "." "45" times "980"N="440"N} {}to move the crate. Once there is motion, friction is less and the coefficient of kinetic friction might be 0.30, so that a force of only 290 N (fk=μkN=0.30980N=290Nfk=μkN=0.30980N=290N size 12{f rSub { size 8{k} } =μ rSub { size 8{k} } N= left (0 "." "30" right ) left ("980"" N" right )="290"" N"} {}) would keep it moving at a constant speed. If the floor is lubricated, both coefficients are considerably less than they would be without lubrication. Coefficient of friction is a unit less quantity with a magnitude usually between 0 and 1.0. The coefficient of the friction depends on the two surfaces that are in contact.

Take-Home Experiment

Find a small plastic object (such as a food container) and slide it on a kitchen table by giving it a gentle tap. Now spray water on the table, simulating a light shower of rain. What happens now when you give the object the same-sized tap? Now add a few drops of (vegetable or olive) oil on the surface of the water and give the same tap. What happens now? This latter situation is particularly important for drivers to note, especially after a light rain shower. Why?

Many people have experienced the slipperiness of walking on ice. However, many parts of the body, especially the joints, have much smaller coefficients of friction—often three or four times less than ice. A joint is formed by the ends of two bones, which are connected by thick tissues. The knee joint is formed by the lower leg bone (the tibia) and the thighbone (the femur). The hip is a ball (at the end of the femur) and socket (part of the pelvis) joint. The ends of the bones in the joint are covered by cartilage, which provides a smooth, almost glassy surface. The joints also produce a fluid (synovial fluid) that reduces friction and wear. A damaged or arthritic joint can be replaced by an artificial joint (Figure 5.3). These replacements can be made of metals (stainless steel or titanium) or plastic (polyethylene), also with very small coefficients of friction.

Two X-x rays of an artificial knee replacement are shown.
Figure 5.3 Artificial knee replacement is a procedure that has been performed for more than 20 years. In this figure, we see the post-op X-rays of the right knee joint replacement. (credit: Mike Baird, Flickr)

Other natural lubricants include saliva produced in our mouths to aid in the swallowing process, and the slippery mucus found between organs in the body, allowing them to move freely past each other during heartbeats, during breathing, and when a person moves. Artificial lubricants are also common in hospitals and doctor’s clinics. For example, when ultrasonic imaging is carried out, the gel that couples the transducer to the skin also serves to to lubricate the surface between the transducer and the skin—thereby reducing the coefficient of friction between the two surfaces. This allows the transducer to move freely over the skin.

Example 5.1 Skiing Exercise

A skier with a mass of 62 kg is sliding down a snowy slope. Find the coefficient of kinetic friction for the skier if friction is known to be 45.0 N.

Strategy

The magnitude of kinetic friction was given in to be 45.0 N. Kinetic friction is related to the normal force NN size 12{N} {} as fk=μkNfk=μkN size 12{f rSub { size 8{k} } =μ rSub { size 8{k} } N} {}; thus, the coefficient of kinetic friction can be found if we can find the normal force of the skier on a slope. The normal force is always perpendicular to the surface, and since there is no motion perpendicular to the surface, the normal force should equal the component of the skier’s weight perpendicular to the slope. (See the skier and free-body diagram in Figure 5.4.)

The figure shows a skier going down a slope that forms an angle of 25 degrees with the horizontal. The weight of the skier, labeled w, is represented by a red arrow pointing vertically downward. This weight is divided into two components, w perpendicular is perpendicular to the slope, and w parallel is parallel to the slope. The normal force, labeled N, is also perpendicular to the slope, equal in magnitude but opposite in direction to w perpendicular. The friction, f, is represented by a red arrow pointing upslope. In addition, the figure shows a free body diagram that shows the relative magnitudes and directions of w, f, and N.
Figure 5.4 The motion of the skier and friction are parallel to the slope and so it is most convenient to project all forces onto a coordinate system where one axis is parallel to the slope and the other is perpendicular (axes shown to left of skier). NN (the normal force) is perpendicular to the slope, and ff (the friction) is parallel to the slope, but ww (the skier’s weight) has components along both axes, namely w w and W // W // . NN is equal in magnitude to ww, so there is no motion perpendicular to the slope. However, ff is less than W//W// in magnitude, so there is acceleration down the slope (along the x-axis).

That is,

N=w=wcos25º=mgcos25º.N=w=wcos25º=mgcos25º. size 12{N=w rSub { size 8{ ortho } } =w"cos""25" rSup { size 8{ circ } } = ital "mg""cos""25" rSup { size 8{ circ } } } {}
5.6

Substituting this into our expression for kinetic friction, we get

fk=μkmgcos25º,fk=μkmgcos25º, size 12{f rSub { size 8{k} } =μ rSub { size 8{k} } ital "mg""cos""25" rSup { size 8{ circ } } } {}
5.7

which can now be solved for the coefficient of kinetic friction μkμk size 12{μ rSub { size 8{k} } } {}.

Solution

Solving for μkμk size 12{μ rSub { size 8{k} } } {} gives

μk=fkN=fkwcos25º=fkmgcos25º.μk=fkN=fkwcos25º=fkmgcos25º. size 12{μ rSub { size 8{k} } = { {f rSub { size 8{k} } } over {N} } = { {f rSub { size 8{k} } } over {w"cos""25" rSup { size 8{ circ } } } } = { {f rSub { size 8{k} } } over { ital "mg""cos""25" rSup { size 8{ circ } } } } } {}
5.8

Substituting known values on the right-hand side of the equation,

μk=45.0 N(62 kg)(9.80 m/s2)(0.906)=0.082.μk=45.0 N(62 kg)(9.80 m/s2)(0.906)=0.082. size 12{μ rSub { size 8{k} } = { {"45" "." 0N} over { \( "60"`"kg" \) \( 9 "." "80"`"m/s" rSup { size 8{2} } \) \( 0 "." "906" \) } } =0 "." "084"} {}
5.9

Discussion

This result is a little smaller than the coefficient listed in Table 5.1 for waxed wood on snow, but it is still reasonable since values of the coefficients of friction can vary greatly. In situations like this, where an object of mass m m slides down a slope that makes an angle θ θ size 12{θ} {} with the horizontal, friction is given by fk=μkmgcosθfk=μkmgcosθ size 12{f rSub { size 8{k} } =μ rSub { size 8{k} } ital "mg""cos"θ} {}. All objects will slide down a slope with constant acceleration under these circumstances. Proof of this is left for this chapter’s Problems and Exercises.

Take-Home Experiment

An object will slide down an inclined plane at a constant velocity if the net force on the object is zero. We can use this fact to measure the coefficient of kinetic friction between two objects. As shown in Example 5.1, the kinetic friction on a slope fk=μkmgcosθfk=μkmgcosθ size 12{f rSub { size 8{k} } =μ rSub { size 8{k} } ital "mg""cos"θ} {}. The component of the weight down the slope is equal to mgsinθmgsinθ size 12{ ital "mg""sin"θ} {} (see the free-body diagram in Figure 5.4). These forces act in opposite directions, so when they have equal magnitude, the acceleration is zero. Writing these out:

f k = Fg x f k = Fg x size 12{f rSub { size 8{k} } = ital "Fgx"} {}
5.10
μkmgcosθ=mgsinθ.μkmgcosθ=mgsinθ. size 12{μ rSub { size 8{k} } ital "mg""cos"θ= ital "mg""sin"θ} {}
5.11

Solving for μkμk size 12{μ rSub { size 8{k} } } {}, we find that

μk=mgsinθmgcosθ=tanθ.μk=mgsinθmgcosθ=tanθ. size 12{μ rSub { size 8{k} } = { { ital "mg""sin"θ} over { ital "mg""cos"θ} } ="tan"θ} {}
5.12

Put a coin on a book and tilt it until the coin slides at a constant velocity down the book. You might need to tap the book lightly to get the coin to move. Measure the angle of tilt relative to the horizontal and find μkμk size 12{μ rSub { size 8{K} } } {}. Note that the coin will not start to slide at all until an angle greater than θ θ size 12{θ} {} is attained, since the coefficient of static friction is larger than the coefficient of kinetic friction. Discuss how this may affect the value for μkμk size 12{μ rSub { size 8{K} } } {} and its uncertainty.

We have discussed that when an object rests on a horizontal surface, there is a normal force supporting it equal in magnitude to its weight. Furthermore, simple friction is always proportional to the normal force.

Making Connections: Submicroscopic Explanations of Friction

The simpler aspects of friction dealt with so far are its macroscopic (large-scale) characteristics. Great strides have been made in the atomic-scale explanation of friction during the past several decades. Researchers are finding that the atomic nature of friction seems to have several fundamental characteristics. These characteristics not only explain some of the simpler aspects of friction—they also hold the potential for the development of nearly friction-free environments that could save hundreds of billions of dollars in energy which is currently being converted (unnecessarily) to heat.

Figure 5.5 illustrates one macroscopic characteristic of friction that is explained by microscopic (small-scale) research. We have noted that friction is proportional to the normal force, but not to the area in contact, a somewhat counterintuitive notion. When two rough surfaces are in contact, the actual contact area is a tiny fraction of the total area since only high spots touch. When a greater normal force is exerted, the actual contact area increases, and it is found that the friction is proportional to this area.

This figure has two parts, each of which shows two rough surfaces in close proximity to each other. In the first part, the normal force is small, so that the area of contact between the two surfaces is much smaller than their total area. In the second part, the normal force is large, so that the area of contact between the two surfaces has increased. As a result, the friction between the two surfaces in the second part is also greater than the friction in the first part.
Figure 5.5 Two rough surfaces in contact have a much smaller area of actual contact than their total area. When there is a greater normal force as a result of a greater applied force, the area of actual contact increases as does friction.

But the atomic-scale view promises to explain far more than the simpler features of friction. The mechanism for how heat is generated is now being determined. In other words, why do surfaces get warmer when rubbed? Essentially, atoms are linked with one another to form lattices. When surfaces rub, the surface atoms adhere and cause atomic lattices to vibrate—essentially creating sound waves that penetrate the material. The sound waves diminish with distance and their energy is converted into heat. Chemical reactions that are related to frictional wear can also occur between atoms and molecules on the surfaces. Figure 5.6 shows how the tip of a probe drawn across another material is deformed by atomic-scale friction. The force needed to drag the tip can be measured and is found to be related to shear stress, which will be discussed later in this chapter. The variation in shear stress is remarkable (more than a factor of 10 12 10 12 size 12{"10" rSup { size 8{"12"} } } {} ) and difficult to predict theoretically, but shear stress is yielding a fundamental understanding of a large-scale phenomenon known since ancient times—friction.

This figure shows a molecular model of a probe that is dragged over the surface of a substrate. The substrate is represented by a rectangular prism, made up of a grid of small spheres, each sphere representing an atom. The probe, made up of a different grid of small spheres, is in the form of an inverted pyramid with a flattened peak. The pyramid is somewhat distorted because of friction.
Figure 5.6 The tip of a probe is deformed sideways by frictional force as the probe is dragged across a surface. Measurements of how the force varies for different materials are yielding fundamental insights into the atomic nature of friction.

PhET Explorations: Forces and Motion

Explore the forces at work when you try to push a filing cabinet. Create an applied force and see the resulting friction force and total force acting on the cabinet. Charts show the forces, position, velocity, and acceleration vs. time. Draw a free-body diagram of all the forces (including gravitational and normal forces). Click to open media in new browser.

Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information Citation information

© Jun 21, 2012 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.