Skip to Content
OpenStax Logo
College Physics

13.6 Humidity, Evaporation, and Boiling

College Physics13.6 Humidity, Evaporation, and Boiling
  1. Preface
  2. 1 Introduction: The Nature of Science and Physics
    1. Introduction to Science and the Realm of Physics, Physical Quantities, and Units
    2. 1.1 Physics: An Introduction
    3. 1.2 Physical Quantities and Units
    4. 1.3 Accuracy, Precision, and Significant Figures
    5. 1.4 Approximation
    6. Glossary
    7. Section Summary
    8. Conceptual Questions
    9. Problems & Exercises
  3. 2 Kinematics
    1. Introduction to One-Dimensional Kinematics
    2. 2.1 Displacement
    3. 2.2 Vectors, Scalars, and Coordinate Systems
    4. 2.3 Time, Velocity, and Speed
    5. 2.4 Acceleration
    6. 2.5 Motion Equations for Constant Acceleration in One Dimension
    7. 2.6 Problem-Solving Basics for One-Dimensional Kinematics
    8. 2.7 Falling Objects
    9. 2.8 Graphical Analysis of One-Dimensional Motion
    10. Glossary
    11. Section Summary
    12. Conceptual Questions
    13. Problems & Exercises
  4. 3 Two-Dimensional Kinematics
    1. Introduction to Two-Dimensional Kinematics
    2. 3.1 Kinematics in Two Dimensions: An Introduction
    3. 3.2 Vector Addition and Subtraction: Graphical Methods
    4. 3.3 Vector Addition and Subtraction: Analytical Methods
    5. 3.4 Projectile Motion
    6. 3.5 Addition of Velocities
    7. Glossary
    8. Section Summary
    9. Conceptual Questions
    10. Problems & Exercises
  5. 4 Dynamics: Force and Newton's Laws of Motion
    1. Introduction to Dynamics: Newton’s Laws of Motion
    2. 4.1 Development of Force Concept
    3. 4.2 Newton’s First Law of Motion: Inertia
    4. 4.3 Newton’s Second Law of Motion: Concept of a System
    5. 4.4 Newton’s Third Law of Motion: Symmetry in Forces
    6. 4.5 Normal, Tension, and Other Examples of Forces
    7. 4.6 Problem-Solving Strategies
    8. 4.7 Further Applications of Newton’s Laws of Motion
    9. 4.8 Extended Topic: The Four Basic Forces—An Introduction
    10. Glossary
    11. Section Summary
    12. Conceptual Questions
    13. Problems & Exercises
  6. 5 Further Applications of Newton's Laws: Friction, Drag, and Elasticity
    1. Introduction: Further Applications of Newton’s Laws
    2. 5.1 Friction
    3. 5.2 Drag Forces
    4. 5.3 Elasticity: Stress and Strain
    5. Glossary
    6. Section Summary
    7. Conceptual Questions
    8. Problems & Exercises
  7. 6 Uniform Circular Motion and Gravitation
    1. Introduction to Uniform Circular Motion and Gravitation
    2. 6.1 Rotation Angle and Angular Velocity
    3. 6.2 Centripetal Acceleration
    4. 6.3 Centripetal Force
    5. 6.4 Fictitious Forces and Non-inertial Frames: The Coriolis Force
    6. 6.5 Newton’s Universal Law of Gravitation
    7. 6.6 Satellites and Kepler’s Laws: An Argument for Simplicity
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
  8. 7 Work, Energy, and Energy Resources
    1. Introduction to Work, Energy, and Energy Resources
    2. 7.1 Work: The Scientific Definition
    3. 7.2 Kinetic Energy and the Work-Energy Theorem
    4. 7.3 Gravitational Potential Energy
    5. 7.4 Conservative Forces and Potential Energy
    6. 7.5 Nonconservative Forces
    7. 7.6 Conservation of Energy
    8. 7.7 Power
    9. 7.8 Work, Energy, and Power in Humans
    10. 7.9 World Energy Use
    11. Glossary
    12. Section Summary
    13. Conceptual Questions
    14. Problems & Exercises
  9. 8 Linear Momentum and Collisions
    1. Introduction to Linear Momentum and Collisions
    2. 8.1 Linear Momentum and Force
    3. 8.2 Impulse
    4. 8.3 Conservation of Momentum
    5. 8.4 Elastic Collisions in One Dimension
    6. 8.5 Inelastic Collisions in One Dimension
    7. 8.6 Collisions of Point Masses in Two Dimensions
    8. 8.7 Introduction to Rocket Propulsion
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  10. 9 Statics and Torque
    1. Introduction to Statics and Torque
    2. 9.1 The First Condition for Equilibrium
    3. 9.2 The Second Condition for Equilibrium
    4. 9.3 Stability
    5. 9.4 Applications of Statics, Including Problem-Solving Strategies
    6. 9.5 Simple Machines
    7. 9.6 Forces and Torques in Muscles and Joints
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
  11. 10 Rotational Motion and Angular Momentum
    1. Introduction to Rotational Motion and Angular Momentum
    2. 10.1 Angular Acceleration
    3. 10.2 Kinematics of Rotational Motion
    4. 10.3 Dynamics of Rotational Motion: Rotational Inertia
    5. 10.4 Rotational Kinetic Energy: Work and Energy Revisited
    6. 10.5 Angular Momentum and Its Conservation
    7. 10.6 Collisions of Extended Bodies in Two Dimensions
    8. 10.7 Gyroscopic Effects: Vector Aspects of Angular Momentum
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  12. 11 Fluid Statics
    1. Introduction to Fluid Statics
    2. 11.1 What Is a Fluid?
    3. 11.2 Density
    4. 11.3 Pressure
    5. 11.4 Variation of Pressure with Depth in a Fluid
    6. 11.5 Pascal’s Principle
    7. 11.6 Gauge Pressure, Absolute Pressure, and Pressure Measurement
    8. 11.7 Archimedes’ Principle
    9. 11.8 Cohesion and Adhesion in Liquids: Surface Tension and Capillary Action
    10. 11.9 Pressures in the Body
    11. Glossary
    12. Section Summary
    13. Conceptual Questions
    14. Problems & Exercises
  13. 12 Fluid Dynamics and Its Biological and Medical Applications
    1. Introduction to Fluid Dynamics and Its Biological and Medical Applications
    2. 12.1 Flow Rate and Its Relation to Velocity
    3. 12.2 Bernoulli’s Equation
    4. 12.3 The Most General Applications of Bernoulli’s Equation
    5. 12.4 Viscosity and Laminar Flow; Poiseuille’s Law
    6. 12.5 The Onset of Turbulence
    7. 12.6 Motion of an Object in a Viscous Fluid
    8. 12.7 Molecular Transport Phenomena: Diffusion, Osmosis, and Related Processes
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  14. 13 Temperature, Kinetic Theory, and the Gas Laws
    1. Introduction to Temperature, Kinetic Theory, and the Gas Laws
    2. 13.1 Temperature
    3. 13.2 Thermal Expansion of Solids and Liquids
    4. 13.3 The Ideal Gas Law
    5. 13.4 Kinetic Theory: Atomic and Molecular Explanation of Pressure and Temperature
    6. 13.5 Phase Changes
    7. 13.6 Humidity, Evaporation, and Boiling
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
  15. 14 Heat and Heat Transfer Methods
    1. Introduction to Heat and Heat Transfer Methods
    2. 14.1 Heat
    3. 14.2 Temperature Change and Heat Capacity
    4. 14.3 Phase Change and Latent Heat
    5. 14.4 Heat Transfer Methods
    6. 14.5 Conduction
    7. 14.6 Convection
    8. 14.7 Radiation
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  16. 15 Thermodynamics
    1. Introduction to Thermodynamics
    2. 15.1 The First Law of Thermodynamics
    3. 15.2 The First Law of Thermodynamics and Some Simple Processes
    4. 15.3 Introduction to the Second Law of Thermodynamics: Heat Engines and Their Efficiency
    5. 15.4 Carnot’s Perfect Heat Engine: The Second Law of Thermodynamics Restated
    6. 15.5 Applications of Thermodynamics: Heat Pumps and Refrigerators
    7. 15.6 Entropy and the Second Law of Thermodynamics: Disorder and the Unavailability of Energy
    8. 15.7 Statistical Interpretation of Entropy and the Second Law of Thermodynamics: The Underlying Explanation
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  17. 16 Oscillatory Motion and Waves
    1. Introduction to Oscillatory Motion and Waves
    2. 16.1 Hooke’s Law: Stress and Strain Revisited
    3. 16.2 Period and Frequency in Oscillations
    4. 16.3 Simple Harmonic Motion: A Special Periodic Motion
    5. 16.4 The Simple Pendulum
    6. 16.5 Energy and the Simple Harmonic Oscillator
    7. 16.6 Uniform Circular Motion and Simple Harmonic Motion
    8. 16.7 Damped Harmonic Motion
    9. 16.8 Forced Oscillations and Resonance
    10. 16.9 Waves
    11. 16.10 Superposition and Interference
    12. 16.11 Energy in Waves: Intensity
    13. Glossary
    14. Section Summary
    15. Conceptual Questions
    16. Problems & Exercises
  18. 17 Physics of Hearing
    1. Introduction to the Physics of Hearing
    2. 17.1 Sound
    3. 17.2 Speed of Sound, Frequency, and Wavelength
    4. 17.3 Sound Intensity and Sound Level
    5. 17.4 Doppler Effect and Sonic Booms
    6. 17.5 Sound Interference and Resonance: Standing Waves in Air Columns
    7. 17.6 Hearing
    8. 17.7 Ultrasound
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  19. 18 Electric Charge and Electric Field
    1. Introduction to Electric Charge and Electric Field
    2. 18.1 Static Electricity and Charge: Conservation of Charge
    3. 18.2 Conductors and Insulators
    4. 18.3 Coulomb’s Law
    5. 18.4 Electric Field: Concept of a Field Revisited
    6. 18.5 Electric Field Lines: Multiple Charges
    7. 18.6 Electric Forces in Biology
    8. 18.7 Conductors and Electric Fields in Static Equilibrium
    9. 18.8 Applications of Electrostatics
    10. Glossary
    11. Section Summary
    12. Conceptual Questions
    13. Problems & Exercises
  20. 19 Electric Potential and Electric Field
    1. Introduction to Electric Potential and Electric Energy
    2. 19.1 Electric Potential Energy: Potential Difference
    3. 19.2 Electric Potential in a Uniform Electric Field
    4. 19.3 Electrical Potential Due to a Point Charge
    5. 19.4 Equipotential Lines
    6. 19.5 Capacitors and Dielectrics
    7. 19.6 Capacitors in Series and Parallel
    8. 19.7 Energy Stored in Capacitors
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  21. 20 Electric Current, Resistance, and Ohm's Law
    1. Introduction to Electric Current, Resistance, and Ohm's Law
    2. 20.1 Current
    3. 20.2 Ohm’s Law: Resistance and Simple Circuits
    4. 20.3 Resistance and Resistivity
    5. 20.4 Electric Power and Energy
    6. 20.5 Alternating Current versus Direct Current
    7. 20.6 Electric Hazards and the Human Body
    8. 20.7 Nerve Conduction–Electrocardiograms
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  22. 21 Circuits and DC Instruments
    1. Introduction to Circuits and DC Instruments
    2. 21.1 Resistors in Series and Parallel
    3. 21.2 Electromotive Force: Terminal Voltage
    4. 21.3 Kirchhoff’s Rules
    5. 21.4 DC Voltmeters and Ammeters
    6. 21.5 Null Measurements
    7. 21.6 DC Circuits Containing Resistors and Capacitors
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
  23. 22 Magnetism
    1. Introduction to Magnetism
    2. 22.1 Magnets
    3. 22.2 Ferromagnets and Electromagnets
    4. 22.3 Magnetic Fields and Magnetic Field Lines
    5. 22.4 Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field
    6. 22.5 Force on a Moving Charge in a Magnetic Field: Examples and Applications
    7. 22.6 The Hall Effect
    8. 22.7 Magnetic Force on a Current-Carrying Conductor
    9. 22.8 Torque on a Current Loop: Motors and Meters
    10. 22.9 Magnetic Fields Produced by Currents: Ampere’s Law
    11. 22.10 Magnetic Force between Two Parallel Conductors
    12. 22.11 More Applications of Magnetism
    13. Glossary
    14. Section Summary
    15. Conceptual Questions
    16. Problems & Exercises
  24. 23 Electromagnetic Induction, AC Circuits, and Electrical Technologies
    1. Introduction to Electromagnetic Induction, AC Circuits and Electrical Technologies
    2. 23.1 Induced Emf and Magnetic Flux
    3. 23.2 Faraday’s Law of Induction: Lenz’s Law
    4. 23.3 Motional Emf
    5. 23.4 Eddy Currents and Magnetic Damping
    6. 23.5 Electric Generators
    7. 23.6 Back Emf
    8. 23.7 Transformers
    9. 23.8 Electrical Safety: Systems and Devices
    10. 23.9 Inductance
    11. 23.10 RL Circuits
    12. 23.11 Reactance, Inductive and Capacitive
    13. 23.12 RLC Series AC Circuits
    14. Glossary
    15. Section Summary
    16. Conceptual Questions
    17. Problems & Exercises
  25. 24 Electromagnetic Waves
    1. Introduction to Electromagnetic Waves
    2. 24.1 Maxwell’s Equations: Electromagnetic Waves Predicted and Observed
    3. 24.2 Production of Electromagnetic Waves
    4. 24.3 The Electromagnetic Spectrum
    5. 24.4 Energy in Electromagnetic Waves
    6. Glossary
    7. Section Summary
    8. Conceptual Questions
    9. Problems & Exercises
  26. 25 Geometric Optics
    1. Introduction to Geometric Optics
    2. 25.1 The Ray Aspect of Light
    3. 25.2 The Law of Reflection
    4. 25.3 The Law of Refraction
    5. 25.4 Total Internal Reflection
    6. 25.5 Dispersion: The Rainbow and Prisms
    7. 25.6 Image Formation by Lenses
    8. 25.7 Image Formation by Mirrors
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  27. 26 Vision and Optical Instruments
    1. Introduction to Vision and Optical Instruments
    2. 26.1 Physics of the Eye
    3. 26.2 Vision Correction
    4. 26.3 Color and Color Vision
    5. 26.4 Microscopes
    6. 26.5 Telescopes
    7. 26.6 Aberrations
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
  28. 27 Wave Optics
    1. Introduction to Wave Optics
    2. 27.1 The Wave Aspect of Light: Interference
    3. 27.2 Huygens's Principle: Diffraction
    4. 27.3 Young’s Double Slit Experiment
    5. 27.4 Multiple Slit Diffraction
    6. 27.5 Single Slit Diffraction
    7. 27.6 Limits of Resolution: The Rayleigh Criterion
    8. 27.7 Thin Film Interference
    9. 27.8 Polarization
    10. 27.9 *Extended Topic* Microscopy Enhanced by the Wave Characteristics of Light
    11. Glossary
    12. Section Summary
    13. Conceptual Questions
    14. Problems & Exercises
  29. 28 Special Relativity
    1. Introduction to Special Relativity
    2. 28.1 Einstein’s Postulates
    3. 28.2 Simultaneity And Time Dilation
    4. 28.3 Length Contraction
    5. 28.4 Relativistic Addition of Velocities
    6. 28.5 Relativistic Momentum
    7. 28.6 Relativistic Energy
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
  30. 29 Introduction to Quantum Physics
    1. Introduction to Quantum Physics
    2. 29.1 Quantization of Energy
    3. 29.2 The Photoelectric Effect
    4. 29.3 Photon Energies and the Electromagnetic Spectrum
    5. 29.4 Photon Momentum
    6. 29.5 The Particle-Wave Duality
    7. 29.6 The Wave Nature of Matter
    8. 29.7 Probability: The Heisenberg Uncertainty Principle
    9. 29.8 The Particle-Wave Duality Reviewed
    10. Glossary
    11. Section Summary
    12. Conceptual Questions
    13. Problems & Exercises
  31. 30 Atomic Physics
    1. Introduction to Atomic Physics
    2. 30.1 Discovery of the Atom
    3. 30.2 Discovery of the Parts of the Atom: Electrons and Nuclei
    4. 30.3 Bohr’s Theory of the Hydrogen Atom
    5. 30.4 X Rays: Atomic Origins and Applications
    6. 30.5 Applications of Atomic Excitations and De-Excitations
    7. 30.6 The Wave Nature of Matter Causes Quantization
    8. 30.7 Patterns in Spectra Reveal More Quantization
    9. 30.8 Quantum Numbers and Rules
    10. 30.9 The Pauli Exclusion Principle
    11. Glossary
    12. Section Summary
    13. Conceptual Questions
    14. Problems & Exercises
  32. 31 Radioactivity and Nuclear Physics
    1. Introduction to Radioactivity and Nuclear Physics
    2. 31.1 Nuclear Radioactivity
    3. 31.2 Radiation Detection and Detectors
    4. 31.3 Substructure of the Nucleus
    5. 31.4 Nuclear Decay and Conservation Laws
    6. 31.5 Half-Life and Activity
    7. 31.6 Binding Energy
    8. 31.7 Tunneling
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  33. 32 Medical Applications of Nuclear Physics
    1. Introduction to Applications of Nuclear Physics
    2. 32.1 Medical Imaging and Diagnostics
    3. 32.2 Biological Effects of Ionizing Radiation
    4. 32.3 Therapeutic Uses of Ionizing Radiation
    5. 32.4 Food Irradiation
    6. 32.5 Fusion
    7. 32.6 Fission
    8. 32.7 Nuclear Weapons
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  34. 33 Particle Physics
    1. Introduction to Particle Physics
    2. 33.1 The Yukawa Particle and the Heisenberg Uncertainty Principle Revisited
    3. 33.2 The Four Basic Forces
    4. 33.3 Accelerators Create Matter from Energy
    5. 33.4 Particles, Patterns, and Conservation Laws
    6. 33.5 Quarks: Is That All There Is?
    7. 33.6 GUTs: The Unification of Forces
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
  35. 34 Frontiers of Physics
    1. Introduction to Frontiers of Physics
    2. 34.1 Cosmology and Particle Physics
    3. 34.2 General Relativity and Quantum Gravity
    4. 34.3 Superstrings
    5. 34.4 Dark Matter and Closure
    6. 34.5 Complexity and Chaos
    7. 34.6 High-temperature Superconductors
    8. 34.7 Some Questions We Know to Ask
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  36. A | Atomic Masses
  37. B | Selected Radioactive Isotopes
  38. C | Useful Information
  39. D | Glossary of Key Symbols and Notation
  40. Index
Figure 13.31 Dew drops like these, on a banana leaf photographed just after sunrise, form when the air temperature drops to or below the dew point. At the dew point, the rate at which water molecules join together is greater than the rate at which they separate, and some of the water condenses to form droplets. (credit: Aaron Escobar, Flickr)

The expression “it’s not the heat, it’s the humidity” makes a valid point. We keep cool in hot weather by evaporating sweat from our skin and water from our breathing passages. Because evaporation is inhibited by high humidity, we feel hotter at a given temperature when the humidity is high. Low humidity, on the other hand, can cause discomfort from excessive drying of mucous membranes and can lead to an increased risk of respiratory infections.

When we say humidity, we really mean relative humidity. Relative humidity tells us how much water vapor is in the air compared with the maximum possible. At its maximum, denoted as saturation, the relative humidity is 100%, and evaporation is inhibited. The amount of water vapor in the air depends on temperature. For example, relative humidity rises in the evening, as air temperature declines, sometimes reaching the dew point. At the dew point temperature, relative humidity is 100%, and fog may result from the condensation of water droplets if they are small enough to stay in suspension. Conversely, if you wish to dry something (perhaps your hair), it is more effective to blow hot air over it rather than cold air, because, among other things, the increase in temperature increases the energy of the molecules, so the rate of evaporation increases.

The amount of water vapor in the air depends on the vapor pressure of water. The liquid and solid phases are continuously giving off vapor because some of the molecules have high enough speeds to enter the gas phase; see Figure 13.32(a). If a lid is placed over the container, as in Figure 13.32(b), evaporation continues, increasing the pressure, until sufficient vapor has built up for condensation to balance evaporation. Then equilibrium has been achieved, and the vapor pressure is equal to the partial pressure of water in the container. Vapor pressure increases with temperature because molecular speeds are higher as temperature increases. Table 13.5 gives representative values of water vapor pressure over a range of temperatures.

Two containers, each filled two-thirds with water. One is open to the atmosphere and the other is sealed at the top. The water molecules are depicted as circles with vector arrows of different lengths and directions to indicate velocity. In the sealed container the density of molecules in the air above the water is greater than in the unsealed container. In the sealed container, water is condensing along the walls and top of the upper part of the container.
Figure 13.32 (a) Because of the distribution of speeds and kinetic energies, some water molecules can break away to the vapor phase even at temperatures below the ordinary boiling point. (b) If the container is sealed, evaporation will continue until there is enough vapor density for the condensation rate to equal the evaporation rate. This vapor density and the partial pressure it creates are the saturation values. They increase with temperature and are independent of the presence of other gases, such as air. They depend only on the vapor pressure of water.

Relative humidity is related to the partial pressure of water vapor in the air. At 100% humidity, the partial pressure is equal to the vapor pressure, and no more water can enter the vapor phase. If the partial pressure is less than the vapor pressure, then evaporation will take place, as humidity is less than 100%. If the partial pressure is greater than the vapor pressure, condensation takes place. In everyday language, people sometimes refer to the capacity of air to “hold” water vapor, but this is not actually what happens. The water vapor is not held by the air. The amount of water in air is determined by the vapor pressure of water and has nothing to do with the properties of air.

Temperature (ºC)(ºC) size 12{ \( °C \) } {} Vapor pressure (Pa) Saturation vapor density (g/m3)
−50 4.0 0.039
−20 1 . 04 × 10 2 1 . 04 × 10 2 size 12{1 "." "04" times "10" rSup { size 8{2} } } {} 0.89
−10 2 . 60 × 10 2 2 . 60 × 10 2 size 12{2 "." "60"´"10" rSup { size 8{2} } } {} 2.36
0 6 . 10 × 10 2 6 . 10 × 10 2 size 12{6 "." "10"´"10" rSup { size 8{2} } } {} 4.84
5 8 . 68 × 10 2 8 . 68 × 10 2 size 12{8 "." "68"´"10" rSup { size 8{2} } } {} 6.80
10 1 . 19 × 10 3 1 . 19 × 10 3 size 12{1 "." "19"´"10" rSup { size 8{3} } } {} 9.40
15 1 . 69 × 10 3 1 . 69 × 10 3 size 12{1 "." "69"´"10" rSup { size 8{3} } } {} 12.8
20 2 . 33 × 10 3 2 . 33 × 10 3 size 12{2 "." "33"´"10" rSup { size 8{3} } } {} 17.2
25 3 . 17 × 10 3 3 . 17 × 10 3 size 12{3 "." "17"´"10" rSup { size 8{3} } } {} 23.0
30 4 . 24 × 10 3 4 . 24 × 10 3 size 12{4 "." "24"´"10" rSup { size 8{3} } } {} 30.4
37 6 . 31 × 10 3 6 . 31 × 10 3 size 12{6 "." "31"´"10" rSup { size 8{3} } } {} 44.0
40 7 . 34 × 10 3 7 . 34 × 10 3 size 12{7 "." "34"´"10" rSup { size 8{3} } } {} 51.1
50 1 . 23 × 10 4 1 . 23 × 10 4 size 12{1 "." "23" times "10" rSup { size 8{4} } } {} 82.4
60 1 . 99 × 10 4 1 . 99 × 10 4 size 12{1 "." "99"´"10" rSup { size 8{4} } } {} 130
70 3 . 12 × 10 4 3 . 12 × 10 4 size 12{3 "." "12"´"10" rSup { size 8{4} } } {} 197
80 4 . 73 × 10 4 4 . 73 × 10 4 size 12{4 "." "73"´"10" rSup { size 8{4} } } {} 294
90 7 . 01 × 10 4 7 . 01 × 10 4 size 12{7 "." "01"´"10" rSup { size 8{4} } } {} 418
95 8 . 59 × 10 4 8 . 59 × 10 4 size 12{8 "." "59"´"10" rSup { size 8{4} } } {} 505
100 1 . 01 × 10 5 1 . 01 × 10 5 size 12{1 "." "99"´"10" rSup { size 8{5} } } {} 598
120 1 . 99 × 10 5 1 . 99 × 10 5 size 12{1 "." "99"´"10" rSup { size 8{5} } } {} 1095
150 4 . 76 × 10 5 4 . 76 × 10 5 size 12{4 "." "76"´"10" rSup { size 8{5} } } {} 2430
200 1 . 55 × 10 6 1 . 55 × 10 6 size 12{1 "." "55"´"10" rSup { size 8{6} } } {} 7090
220 2 . 32 × 10 6 2 . 32 × 10 6 size 12{2 "." "32"´"10" rSup { size 8{6} } } {} 10,200
Table 13.5 Saturation Vapor Density of Water

Example 13.12 Calculating Density Using Vapor Pressure

Table 13.5 gives the vapor pressure of water at 20.0ºC20.0ºC size 12{"20" "." 0°C} {} as 2.33×103 Pa.2.33×103 Pa. size 12{2 "." "33"´"10" rSup { size 8{3} } " Pa" "." } {} Use the ideal gas law to calculate the density of water vapor in g/m3g/m3 size 12{g/m rSup { size 8{3} } } {} that would create a partial pressure equal to this vapor pressure. Compare the result with the saturation vapor density given in the table.

Strategy

To solve this problem, we need to break it down into a two steps. The partial pressure follows the ideal gas law,

PV=nRT,PV=nRT, size 12{ size 11{ ital "PV"= ital "nRT"}} {}
13.70

where nn size 12{n} {} is the number of moles. If we solve this equation for n/Vn/V size 12{n/V} {} to calculate the number of moles per cubic meter, we can then convert this quantity to grams per cubic meter as requested. To do this, we need to use the molecular mass of water, which is given in the periodic table.

Solution

1. Identify the knowns and convert them to the proper units:

  1. temperature T=20ºC=293 KT=20ºC=293 K size 12{T="20"°"C=293 K"} {}
  2. vapor pressure PP size 12{P} {} of water at 20ºC20ºC size 12{"20"°C} {} is 2.33×103 Pa2.33×103 Pa size 12{2 "." "33" times "10" rSup { size 8{3} } " Pa"} {}
  3. molecular mass of water is 18.0 g/mol18.0 g/mol size 12{"18" "." 0" g/mol"} {}

2. Solve the ideal gas law for n/Vn/V size 12{n/V} {}.

n V = P RT n V = P RT size 12{ { { size 11{n}} over { size 11{V}} } = { { size 11{P}} over { size 11{ ital "RT"}} } } {}
13.71

3. Substitute known values into the equation and solve for n/Vn/V size 12{n/V} {}.

n V = P RT = 2 . 33 × 10 3 Pa 8 . 31 J/mol K 293 K = 0 . 957 mol/m 3 n V = P RT = 2 . 33 × 10 3 Pa 8 . 31 J/mol K 293 K = 0 . 957 mol/m 3 size 12{ { { size 11{n}} over { size 11{V}} } = { { size 11{P}} over { size 11{ ital "RT"}} } = { { size 11{2 "." "33" times "10" rSup { size 8{3} } `"Pa"}} over { size 12{ left (8 "." "31"`"J/mol" cdot K right ) left ("293"`K right )} } } =0 "." "957"`"mol/m" rSup { size 8{3} } } {}
13.72

4. Convert the density in moles per cubic meter to grams per cubic meter.

ρ = 0 . 957 mol m 3 18 . 0 g mol = 17 . 2 g/m 3 ρ = 0 . 957 mol m 3 18 . 0 g mol = 17 . 2 g/m 3 size 12{ size 11{ρ= left ( size 11{0 "." "957" { { size 11{"mol"}} over { size 11{m rSup { size 8{3} } }} } } right ) left ( size 12{ { {"18" "." "0 g"} over { size 12{"mol"} } } } right )="17" "." 2" g/m" rSup { size 8{3} } }} {}
13.73

Discussion

The density is obtained by assuming a pressure equal to the vapor pressure of water at 20.0ºC20.0ºC size 12{"20" "." 0°C} {}. The density found is identical to the value in Table 13.5, which means that a vapor density of 17.2 g/m317.2 g/m3 size 12{"17" "." 2" g/m" rSup { size 8{3} } } {} at 20.0ºC20.0ºC size 12{"20" "." 0°C} {} creates a partial pressure of 2.33×103 Pa,2.33×103 Pa, size 12{2 "." "33"´"10" rSup { size 8{3} } " Pa,"} {} equal to the vapor pressure of water at that temperature. If the partial pressure is equal to the vapor pressure, then the liquid and vapor phases are in equilibrium, and the relative humidity is 100%. Thus, there can be no more than 17.2 g of water vapor per m3m3 size 12{m rSup { size 8{3} } } {} at 20.0ºC20.0ºC size 12{"20" "." 0°C} {}, so that this value is the saturation vapor density at that temperature. This example illustrates how water vapor behaves like an ideal gas: the pressure and density are consistent with the ideal gas law (assuming the density in the table is correct). The saturation vapor densities listed in Table 13.5 are the maximum amounts of water vapor that air can hold at various temperatures.

Percent Relative Humidity

We define percent relative humidity as the ratio of vapor density to saturation vapor density, or

percent relative humidity = vapor density saturation vapor density × 100 percent relative humidity = vapor density saturation vapor density × 100 size 12{ size 11{"percent relative humidity"= { { size 11{"vapor density"}} over { size 11{"saturation vapor density"}} } times "100"}} {}
13.74

We can use this and the data in Table 13.5 to do a variety of interesting calculations, keeping in mind that relative humidity is based on the comparison of the partial pressure of water vapor in air and ice.

Example 13.13 Calculating Humidity and Dew Point

(a) Calculate the percent relative humidity on a day when the temperature is 25.0ºC25.0ºC size 12{"25" "." 0°C} {} and the air contains 9.40 g of water vapor per m3m3 size 12{m rSup { size 8{3} } } {}. (b) At what temperature will this air reach 100% relative humidity (the saturation density)? This temperature is the dew point. (c) What is the humidity when the air temperature is 25.0ºC25.0ºC size 12{"25" "." 0°C} {} and the dew point is 10.0ºC10.0ºC size 12{ +- "10" "." 0°C} {}?

Strategy and Solution

(a) Percent relative humidity is defined as the ratio of vapor density to saturation vapor density.

percent relative humidity = vapor density saturation vapor density × 100 percent relative humidity = vapor density saturation vapor density × 100 size 12{ size 11{"percent relative humidity"= { { size 11{"vapor density"}} over { size 11{"saturation vapor density"}} } times "100"}} {}
13.75

The first is given to be 9.40 g/m39.40 g/m3 size 12{9 "." "40 g/m" rSup { size 8{3} } } {}, and the second is found in Table 13.5 to be 23.0 g/m323.0 g/m3 size 12{"23" "." "0 g/m" rSup { size 8{3} } } {}. Thus,

percent relative humidity = 9 . 40 g/m 3 23 . 0 g/m 3 × 100 = 40 . 9 .% percent relative humidity = 9 . 40 g/m 3 23 . 0 g/m 3 × 100 = 40 . 9 .% size 12{ size 11{"percent relative humidity"= { { size 11{9 "." "40 g/m" rSup { size 8{3} } }} over { size 12{"23" "." "0 g/m" rSup { size 8{3} } } } } ´"100"="40" "." 9% "." }} {}
13.76

(b) The air contains 9.40 g/m39.40 g/m3 size 12{9 "." "40 g/m" rSup { size 8{3} } } {} of water vapor. The relative humidity will be 100% at a temperature where 9.40 g/m39.40 g/m3 size 12{9 "." "40 g/m" rSup { size 8{3} } } {} is the saturation density. Inspection of Table 13.5 reveals this to be the case at 10.0ºC10.0ºC size 12{"10" "." 0°C} {}, where the relative humidity will be 100%. That temperature is called the dew point for air with this concentration of water vapor.

(c) Here, the dew point temperature is given to be 10.0ºC10.0ºC size 12{ +- "10" "." 0°C} {}. Using Table 13.5, we see that the vapor density is 2.36 g/m32.36 g/m3 size 12{2 "." "36 g/m" rSup { size 8{3} } } {}, because this value is the saturation vapor density at 10.0ºC10.0ºC size 12{ +- "10" "." 0°C} {}. The saturation vapor density at 25.0ºC25.0ºC size 12{"25" "." 0°C} {} is seen to be 23.0 g/m323.0 g/m3 size 12{"23" "." "0 g/m" rSup { size 8{3} } } {}. Thus, the relative humidity at 25.0ºC25.0ºC size 12{"25" "." 0°C} {} is

percent relative humidity = 2 . 36 g/m 3 23 . 0 g/m 3 × 100 = 10 . 3 % . percent relative humidity = 2 . 36 g/m 3 23 . 0 g/m 3 × 100 = 10 . 3 % . size 12{ size 11{"percent relative humidity"= { { size 11{2 "." "36 g/m" rSup { size 8{3} } }} over { size 12{"23" "." "0 g/m" rSup { size 8{3} } } } } ×"100"="10" "." 3% "." }} {}
13.77

Discussion

The importance of dew point is that air temperature cannot drop below 10.0ºC10.0ºC size 12{"10" "." 0°C} {} in part (b), or 10.0ºC10.0ºC size 12{ +- "10" "." 0°C} {} in part (c), without water vapor condensing out of the air. If condensation occurs, considerable transfer of heat occurs (discussed in Heat and Heat Transfer Methods), which prevents the temperature from further dropping. When dew points are below 0ºC0ºC size 12{0°C} {}, freezing temperatures are a greater possibility, which explains why farmers keep track of the dew point. Low humidity in deserts means low dew-point temperatures. Thus condensation is unlikely. If the temperature drops, vapor does not condense in liquid drops. Because no heat is released into the air, the air temperature drops more rapidly compared to air with higher humidity. Likewise, at high temperatures, liquid droplets do not evaporate, so that no heat is removed from the gas to the liquid phase. This explains the large range of temperature in arid regions.

Why does water boil at 100ºC100ºC size 12{"100"°C} {}? You will note from Table 13.5 that the vapor pressure of water at 100ºC100ºC size 12{"100"°C} {} is 1.01×105 Pa1.01×105 Pa size 12{1 "." "01"´"10" rSup { size 8{5} } " Pa"} {}, or 1.00 atm. Thus, it can evaporate without limit at this temperature and pressure. But why does it form bubbles when it boils? This is because water ordinarily contains significant amounts of dissolved air and other impurities, which are observed as small bubbles of air in a glass of water. If a bubble starts out at the bottom of the container at 20ºC20ºC size 12{"20"°C} {}, it contains water vapor (about 2.30%). The pressure inside the bubble is fixed at 1.00 atm (we ignore the slight pressure exerted by the water around it). As the temperature rises, the amount of air in the bubble stays the same, but the water vapor increases; the bubble expands to keep the pressure at 1.00 atm. At 100ºC100ºC size 12{"100"°C} {}, water vapor enters the bubble continuously since the partial pressure of water is equal to 1.00 atm in equilibrium. It cannot reach this pressure, however, since the bubble also contains air and total pressure is 1.00 atm. The bubble grows in size and thereby increases the buoyant force. The bubble breaks away and rises rapidly to the surface—we call this boiling! (See Figure 13.33.)

A beaker of water being heated over a flame. The beaker is shown at three different times. In the first, at twenty degrees C, a small bubble sits on the bottom of the beaker. In the second step, the water temperature is fifty degrees C and the bubble is larger, though still sitting on the bottom of the beaker. In the third step, the water temperature is one hundred degrees C. The bubble is larger and is rising toward the surface.
Figure 13.33 (a) An air bubble in water starts out saturated with water vapor at 20ºC20ºC size 12{"20"°C} {}. (b) As the temperature rises, water vapor enters the bubble because its vapor pressure increases. The bubble expands to keep its pressure at 1.00 atm. (c) At 100ºC100ºC size 12{"100"°C} {}, water vapor enters the bubble continuously because water’s vapor pressure exceeds its partial pressure in the bubble, which must be less than 1.00 atm. The bubble grows and rises to the surface.

Check Your Understanding

Freeze drying is a process in which substances, such as foods, are dried by placing them in a vacuum chamber and lowering the atmospheric pressure around them. How does the lowered atmospheric pressure speed the drying process, and why does it cause the temperature of the food to drop?

Solution

Decreased the atmospheric pressure results in decreased partial pressure of water, hence a lower humidity. So evaporation of water from food, for example, will be enhanced. The molecules of water most likely to break away from the food will be those with the greatest velocities. Those remaining thus have a lower average velocity and a lower temperature. This can (and does) result in the freezing and drying of the food; hence the process is aptly named freeze drying.

PhET Explorations: States of Matter

Watch different types of molecules form a solid, liquid, or gas. Add or remove heat and watch the phase change. Change the temperature or volume of a container and see a pressure-temperature diagram respond in real time. Relate the interaction potential to the forces between molecules.

Figure 13.34
Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information Citation information

© Jun 21, 2012 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.