College Physics for AP® Courses

# Chapter 9

College Physics for AP® CoursesChapter 9

## Problems & Exercises

1.

a) $46.8 N·m46.8 N·m$

b) It does not matter at what height you push. The torque depends on only the magnitude of the force applied and the perpendicular distance of the force's application from the hinges. (Children don't have a tougher time opening a door because they push lower than adults, they have a tougher time because they don't push far enough from the hinges.)

3.

23.3 N

5.

Given:

$m1 = 26.0 kg, m2= 32.0 kg, ms= 12.0 kg, r1 = 1.60 m, rs= 0.160 m, find (a) r2, (b) Fp m1 = 26.0 kg, m2= 32.0 kg, ms= 12.0 kg, r1 = 1.60 m, rs= 0.160 m, find (a) r2, (b) Fp$

a) Since children are balancing:

net τ cw = – net τ ccw ⇒ w 1 r 1 + m s gr s = w 2 r 2 net τ cw = – net τ ccw ⇒ w 1 r 1 + m s gr s = w 2 r 2 alignl { stack { size 12{"net "τ rSub { size 8{"cw"} } =" net "τ rSub { size 8{"ccw"} } } {} # drarrow w rSub { size 8{1} } r rSub { size 8{1} } +m rSub { size 8{s} } ital "gr" rSub { size 8{s} } =w rSub { size 8{2} } r rSub { size 8{2} } {} # {} } } {}

So, solving for $r2r2 size 12{r rSub { size 8{2} } } {}$ gives:

$r2 = w1r1+msgrs w2 = m1 gr1 + ms grs m2 g = m1r1+msrs m2 = (26.0 kg) (1.60 m) + (12.0 kg) (0.160 m) 32.0 kg = 1.36 m r2 = w1r1+msgrs w2 = m1 gr1 + ms grs m2 g = m1r1+msrs m2 = (26.0 kg) (1.60 m) + (12.0 kg) (0.160 m) 32.0 kg = 1.36 m$

b) Since the children are not moving:

net F = 0 = F p – w 1 – w 2 – w s ⇒ F p = w 1 + w 2 + w s net F = 0 = F p – w 1 – w 2 – w s ⇒ F p = w 1 + w 2 + w s alignl { stack { size 12{"net "F=0=F rSub { size 8{p} } - w rSub { size 8{1} } - w rSub { size 8{2} } - w rSub { size 8{s} } } {} # drarrow F rSub { size 8{p} } =w rSub { size 8{1} } +w rSub { size 8{2} } +w rSub { size 8{3} } {} } } {}

So that

Fp = ( 26.0 kg+ 32.0 kg+ 12.0 kg ) ( 9.80 m/ s2 ) = 686 N Fp = ( 26.0 kg+ 32.0 kg+ 12.0 kg ) ( 9.80 m/ s2 ) = 686 N alignl { stack { size 12{F rSub { size 8{p} } = left ("26" cdot 0" kg "+" 32" cdot "0 kg "+"12" cdot "0 kg" right ) left (9 cdot "8 " {m} slash {s rSup { size 8{2} } } right )} {} # = {underline {"686"" N"}} {} } } {}

6.

$F wall = 1.43 × 10 3 N F wall = 1.43 × 10 3 N size 12{F rSub { size 8{"wall"} } =1 cdot "43" times "10" rSup { size 8{3} } N} {}$

8.

a) $2.55×103 N, 16.3º to the left of vertical (i.e., toward the wall)2.55×103 N, 16.3º to the left of vertical (i.e., toward the wall) size 12{θ} {}$

b) 0.292

10.

$F B = 2.12 × 10 4 N F B = 2.12 × 10 4 N size 12{F rSub { size 8{B} } =2 cdot "12" times "10" rSup { size 8{4} } N} {}$

12.

a) 0.167, or about one-sixth of the weight is supported by the opposite shore.

b) $F=2.0×104NF=2.0×104N size 12{F=2 "." 0 times "10" rSup { size 8{4} } N} {}$, straight up.

14.

a) 21.6 N

b) 21.6 N

16.

350 N directly upwards

19.

25

50 N

21.

a) $MA=18.5MA=18.5 size 12{"MA"="18" "." 5} {}$

b) $Fi=29.1 NFi=29.1 N size 12{F rSub { size 8{i} } ="29" "." 1N} {}$

c) 510 N downward

23.

$1 . 3 × 10 3 N 1 . 3 × 10 3 N size 12{1 "." "30" times "10" rSup { size 8{3} } N} {}$

25.

a) $T=299 NT=299 N size 12{T="299"N} {}$

b) 897 N upward

26.

F B = 470 N; r 1 = 4.00 cm; w a = 2.50 kg; r 2 = 16.0 cm; w b = 4.00 kg; r 3 = 38.0 cm F E = w a r 2 r 1 − 1 + w b r 3 r 1 − 1 = 2.50 kg 9.80 m / s 2 16.0 cm 4.0 cm – 1 + 4.00 kg 9.80 m / s 2 38.0 cm 4.00 cm – 1 = 407 N F B = 470 N; r 1 = 4.00 cm; w a = 2.50 kg; r 2 = 16.0 cm; w b = 4.00 kg; r 3 = 38.0 cm F E = w a r 2 r 1 − 1 + w b r 3 r 1 − 1 = 2.50 kg 9.80 m / s 2 16.0 cm 4.0 cm – 1 + 4.00 kg 9.80 m / s 2 38.0 cm 4.00 cm – 1 = 407 N alignl { stack { size 12{F rSub { size 8{B} } ="470"" N ; "r rSub { size 8{1} } =4 cdot "00"" cm ; "w rSub { size 8{a} } =2 cdot "50"" kg ;"} {} # r rSub { size 8{2} } ="16" cdot 0" cm ;" {} # w rSub { size 8{b} } =4 cdot "00"" kg ; "r rSub { size 8{3} } ="38" cdot 0" cm" {} # F rSub { size 8{E} } times r rSub { size 8{1} } =w rSub { size 8{a} } left ( { {r rSub { size 8{2} } } over {r rSub { size 8{1} } } } - 1 right )+w rSub { size 8{b} } left ( { {r rSub { size 8{3} } } over {r rSub { size 8{1} } } } - 1 right ) {} # = left (2 cdot "50 kg" right ) left (9 cdot "80 " {m} slash {s rSup { size 8{2} } } right ) left ( { {"16" cdot "0 cm"} over {4 cdot "0 cm"} } - 1 right ) {} # + left (4 cdot "00 kg" right ) left (9 cdot "80 " {m} slash {s rSup { size 8{2} } } right ) left ( { {"38" cdot "0 cm"} over {4 cdot "00 cm"} } - 1 right ) {} # = {underline {"407"" N"}} {} } } {}

28.

1.1 × 10 3 N θ = 190 º ccw from positive x axis 1.1 × 10 3 N θ = 190 º ccw from positive x axis alignl { stack { size 12{1 "." 1 times "10" rSup { size 8{3} } N} {} # θ="190"°"ccw""from""positive"x"axis" {} } } {}

30.

$F V = 97 N, θ = 59º F V = 97 N, θ = 59º size 12{F rSub { size 8{V} } ="97"N,θ="59"°} {}$

32.

(a) 25 N downward

(b) 75 N upward

33.

(a) $FA=2.21×103NFA=2.21×103N size 12{F rSub { size 8{A} } =2 "." "21" times "10" rSup { size 8{3} } N} {}$ upward

(b) $FB=2.94×103NFB=2.94×103N size 12{F rSub { size 8{B} } =2 "." "94" times "10" rSup { size 8{3} } N} {}$ downward

35.

(a) $Fteeth on bullet=1.2×102NFteeth on bullet=1.2×102N size 12{F rSub { size 8{r} } ="116"N} {}$ upward

(b) $FJ=84 NFJ=84 N size 12{F rSub { size 8{J} } ="84"N} {}$ downward

37.

(a) 147 N downward

(b) 1680 N, 3.4 times her weight

(c) 118 J

(d) 49.0 W

39.

a) $x-2=2.33 mx-2=2.33 m size 12{ { bar {x}} rSub { size 8{2} } =2 "." "33"m} {}$

b) The seesaw is 3.0 m long, and hence, there is only 1.50 m of board on the other side of the pivot. The second child is off the board.

c) The position of the first child must be shortened, i.e. brought closer to the pivot.

## Test Prep for AP® Courses

1.

(a)

3.

Both objects are in equilibrium. However, they will respond differently if a force is applied to their sides. If the cone placed on its base is displaced to the side, its center of gravity will remain over its base and it will return to its original position. When the traffic cone placed on its tip is displaced to the side, its center of gravity will drift from its base, causing a torque that will accelerate it to the ground.

5.

(d)

7.
1. FL = 7350 N, FR = 2450 N
2. As the car moves to the right side of the bridge, FL will decrease and FR will increase. (At exactly halfway across the bridge, FL and FR will both be 4900 N.)
9.

The student should mention that the guiding principle behind simple machines is the second condition of equilibrium. Though the torque leaving a machine must be equivalent to torque entering a machine, the same requirement does not exist for forces. As a result, by decreasing the lever arm to the existing force, the size of the existing force will be increased. The mechanical advantage will be equivalent to the ratio of the forces exiting and entering the machine.

11.
1. The force placed on your bicep muscle will be greater than the force placed on the dumbbell. The bicep muscle is closer to your elbow than the downward force placed on your hand from the dumbbell. Because the elbow is the pivot point of the system, this results in a decreased lever arm for the bicep. As a result, the force on the bicep must be greater than that placed on the dumbbell. (How much greater? The ratio between the bicep and dumbbell forces is equal to the inverted ratio of their distances from the elbow. If the dumbbell is ten times further from the elbow than the bicep, the force on the bicep will be 200 pounds!)
2. The force placed on your bicep muscle will decrease. As the forearm lifts the dumbbell, it will get closer to the elbow. As a result, the torque placed on the arm from the weight will decrease and the countering torque created by the bicep muscle will do so as well.
Order a print copy

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

• If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
• If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution: