Skip to ContentGo to accessibility pageKeyboard shortcuts menu
College Physics for AP® Courses

# Chapter 24

College Physics for AP® CoursesChapter 24

## Problems & Exercises

3.

150 kV/m

6.

(a) 33.3 cm (900 MHz) 11.7 cm (2560 MHz)

(b) The microwave oven with the smaller wavelength would produce smaller hot spots in foods, corresponding to the one with the frequency 2560 MHz.

8.

26.96 MHz

10.

$5.0×10145.0×1014$ Hz

12.

$λ = c f = 3 . 00 × 10 8 m/s 1 . 20 × 10 15 Hz = 2 . 50 × 10 – 7 m λ = c f = 3 . 00 × 10 8 m/s 1 . 20 × 10 15 Hz = 2 . 50 × 10 – 7 m size 12{λ= { {c} over {f} } = { {3 "." "00"´"10" rSup { size 8{8} } " m/s"} over {1 "." "20"´"10" rSup { size 8{"15"} } " Hz"} } = {underline {2 "." "50"´"10" rSup { size 8{ +- 7} } " m"}} } {}$

14.

0.600 m

16.

(a) $f=cλ=3.00×108 m/s1×10-10 m=3×1018 Hzf=cλ=3.00×108 m/s1×10-10 m=3×1018 Hz size 12{f= { {c} over {λ} } = { {3 "." "00"´"10" rSup { size 8{8} } " m/s"} over {1´"10" rSup { size 8{ +- "10"} } " m"} } = {underline {3´"10" rSup { size 8{"18"} } " Hz"}} } {}$

(b) X-rays

19.

(a) $6.00×106 m6.00×106 m size 12{5 "." "00" times "10" rSup { size 8{6} } " m"} {}$

(b) $4.33×10−5 T4.33×10−5 T size 12{4 "." "33" times "10" rSup { size 8{ - 5} } " T"} {}$

21.

(a) 1.50 × 10 6 Hz, AM band
(b) The resonance of currents on an antenna that is 1/4 their wavelength is analogous to the fundamental resonant mode of an air column closed at one end, since the tube also has a length equal to 1/4 the wavelength of the fundamental oscillation.

23.

(a) $1.55×1015 Hz1.55×1015 Hz size 12{1 "." "55" times "10" rSup { size 8{"15"} } " Hz"} {}$

(b) The shortest wavelength of visible light is 380 nm, so that

λ visible λ UV = 380 nm 193 nm = 1 . 97 . λ visible λ UV = 380 nm 193 nm = 1 . 97 . alignl { stack { size 12{ { {λ rSub { size 8{"visible"} } } over {λ rSub { size 8{"UV"} } } } } {} # = { {"380 nm"} over {"193 nm"} } {} # =1 "." "97" "." {} } } {}

In other words, the UV radiation is 97% more accurate than the shortest wavelength of visible light, or almost twice as accurate!

25.

$3 . 90 × 10 8 m 3 . 90 × 10 8 m size 12{3 "." "90" times "10" rSup { size 8{8} } " m"} {}$

27.

(a) $1.50×1011 m1.50×1011 m size 12{1 "." "50" times "10" rSup { size 8{"11"} } " m"} {}$

(b) $0.500 μs0.500 μs size 12{0 "." "500 "ms} {}$

(c) 66.7 ns

29.

(a) $−3.5×102 W/m2−3.5×102 W/m2 size 12{-3 "." 5´"10" rSup { size 8{2} } " W/m" rSup { size 8{2} } } {}$

(b) 88%

(c) $1.7μT1.7μT size 12{1 "." 7 mT} {}$

30.

$I = cε 0 E 0 2 2 = 3.00 × 10 8 m/s 8.85 × 10 –12 C 2 /N ⋅ m 2 1 25 V/m 2 2 = 20. 7 W/m 2 I = cε 0 E 0 2 2 = 3.00 × 10 8 m/s 8.85 × 10 –12 C 2 /N ⋅ m 2 1 25 V/m 2 2 = 20. 7 W/m 2$

32.

(a) $I=PA=Pπr2=0.250×10−3 Wπ0.500×10−3 m2=318 W/m2I=PA=Pπr2=0.250×10−3 Wπ0.500×10−3 m2=318 W/m2 size 12{I= { {P} over {A} } = { {P} over {p r rSup { size 8{2} } } } = { {0 "." "250"´"10" rSup { size 8{-3} } " W"} over {∂ left (0 "." "500"´"10" rSup { size 8{-3} } " m" right ) rSup { size 8{2} } } } ="318 W/m" rSup { size 8{2} } } {}$

(b) Iave = cB022μ0⇒B0=2μ0Ic1/2 = 24π×10−7 T⋅m/A318.3 W/m23.00×108 m/s1/2 = 1.63×10−6 T Iave = cB022μ0⇒B0=2μ0Ic1/2 = 24π×10−7 T⋅m/A318.3 W/m23.00×108 m/s1/2 = 1.63×10−6 Talignl { stack { size 12{I rSub { size 8{"ave"} } = { { ital "cB" rSub { size 8{0} rSup { size 8{2} } } } over {2m rSub { size 8{0} } } } drarrow B rSub { size 8{0} } = left ( { {2m rSub { size 8{0} } I} over {c} } right ) rSup { size 8{1/2} } } {} # = left [ { {2 left (4¶´"10" rSup { size 8{-7} } " T" cdot "m/A" right ) left ("318" "." "3 W/m" rSup { size 8{2} } right )} over {3 "." "00"´"10" rSup { size 8{8} } " m/s"} } right ] rSup { size 8{ {1} slash {2} } } {} # = {underline {1 "." "63"´"10" rSup { size 8{-6} } " T"}} {} } } {}

(c) E0 = cB0=3.00×108 m/s1.633×10−6 T = 4.90×102 V/m E0 = cB0=3.00×108 m/s1.633×10−6 T = 4.90×102 V/m alignl { stack { size 12{E rSub { size 8{0} } = ital "cB" rSub { size 8{0} } = left (3 "." "00"´"10" rSup { size 8{8} } " m/s" right ) left (1 "." "633"´"10" rSup { size 8{-6} } " T" right )} {} # = {underline {4 "." "90"´"10" rSup { size 8{2} } " V/m"}} {} } } {}

34.

(a) 89.2 cm

(b) 27.4 V/m

36.

(a) 333 T

(b) $1.33×1019W/m21.33×1019W/m2 size 12{1 "." "33"´"10" rSup { size 8{"19"} } "W/m" rSup { size 8{2} } } {}$

(c) 13.3 kJ

38.

(a) $I=PA=P4πr2∝1r2I=PA=P4πr2∝1r2 size 12{I= { {P} over {A} } = { {P} over {4π r rSup { size 8{2} } } } prop { {1} over {r rSup { size 8{2} } } } } {}$

(b) $I∝E02, B02⇒E02, B02∝1r2⇒E0,B0∝1rI∝E02, B02⇒E02, B02∝1r2⇒E0,B0∝1r$

40.

13.5 pF

42.

(a) $4.07 kW/m24.07 kW/m2 size 12{4 "." "07""kW/m" rSup { size 8{2} } } {}$

(b) 1.75 kV/m

(c) $5.84μT5.84μT size 12{5 "." "84" mT} {}$

(d) 2 min 19 s

44.

(a) $5.00×103 W/m25.00×103 W/m2 size 12{5 "." "00"´"10" rSup { size 8{3} } " W/m" rSup { size 8{2} } } {}$

(b) $3.88×10−6 N3.88×10−6 N size 12{3 "." "88" times "10" rSup { size 8{ - 6} } " N"} {}$

(c) $5.18×10−12 N5.18×10−12 N size 12{ {underline {5 "." "18" times "10" rSup { size 8{ - "12"} } " N"}} } {}$

46.

(a) $t=0t=0 size 12{t=0} {}$

(b) $7.50×10−10 s7.50×10−10 s size 12{7 "." "50" times "10" rSup { size 8{ - "10"} } " s"} {}$

(c) $1.00×10−9 s1.00×10−9 s size 12{1 "." "00" times "10" rSup { size 8{ - 9} } " s"} {}$

48.

(a) $1.01×106 W/m21.01×106 W/m2 size 12{1 "." "01" times "10" rSup { size 8{6} } " W/m" rSup { size 8{2} } } {}$

(b) Much too great for an oven.

(c) The assumed magnetic field is unreasonably large.

50.

(a) $2.53×10−20H2.53×10−20H size 12{2 "." "53" times "10" rSup { size 8{ - "20"} } H} {}$

(b) L is much too small.

(c) The wavelength is unreasonably small.

## Test Prep for AP® Courses

1.

(b)

3.

(a)

5.

(d)

7.

(d)

9.

(d)

11.

(a)

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
• If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
Access for free at https://openstax.org/books/college-physics-ap-courses/pages/1-connection-for-ap-r-courses
• If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
Access for free at https://openstax.org/books/college-physics-ap-courses/pages/1-connection-for-ap-r-courses
Citation information

© Mar 3, 2022 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.