### Learning Objectives

By the end of this section, you will be able to:

- Define conservative force, potential energy, and mechanical energy.
- Explain the potential energy of a spring in terms of its compression when Hooke’s law applies.
- Use the work-energy theorem to show how having only conservative forces leads to conservation of mechanical energy.

The information presented in this section supports the following AP® learning objectives and science practices:

**4.C.1.1**The student is able to calculate the total energy of a system and justify the mathematical routines used in the calculation of component types of energy within the system whose sum is the total energy.**(S.P. 1.4, 2.1, 2.2)****4.C.2.1**The student is able to make predictions about the changes in the mechanical energy of a system when a component of an external force acts parallel or antiparallel to the direction of the displacement of the center of mass.**(S.P. 6.4)****5.B.1.1**The student is able to set up a representation or model showing that a single object can only have kinetic energy and use information about that object to calculate its kinetic energy.**(S.P. 1.4, 2.2)****5.B.1.2**The student is able to translate between a representation of a single object, which can only have kinetic energy, and a system that includes the object, which may have both kinetic and potential energies.**(S.P. 1.5)****5.B.3.1**The student is able to describe and make qualitative and/or quantitative predictions about everyday examples of systems with internal potential energy.**(S.P. 2.2, 6.4, 7.2)****5.B.3.2**The student is able to make quantitative calculations of the internal potential energy of a system from a description or diagram of that system.**(S.P. 1.4, 2.2)****5.B.3.3**The student is able to apply mathematical reasoning to create a description of the internal potential energy of a system from a description or diagram of the objects and interactions in that system.**(S.P. 1.4, 2.2)**

### Potential Energy and Conservative Forces

Work is done by a force, and some forces, such as weight, have special characteristics. A conservative force is one, like the gravitational force, for which work done by or against it depends only on the starting and ending points of a motion and not on the path taken. We can define a potential energy $(\text{PE})$ for any conservative force, just as we did for the gravitational force. For example, when you wind up a toy, an egg timer, or an old-fashioned watch, you do work against its spring and store energy in it. (We treat these springs as ideal, in that we assume there is no friction and no production of thermal energy.) This stored energy is recoverable as work, and it is useful to think of it as potential energy contained in the spring. Indeed, the reason that the spring has this characteristic is that its force is *conservative*. That is, a conservative force results in stored or potential energy. Gravitational potential energy is one example, as is the energy stored in a spring. We will also see how conservative forces are related to the conservation of energy.

### Potential Energy and Conservative Forces

Potential energy is the energy a system has due to position, shape, or configuration. It is stored energy that is completely recoverable.

A conservative force is one for which work done by or against it depends only on the starting and ending points of a motion and not on the path taken.

We can define a potential energy $(\text{PE})$ for any conservative force. The work done against a conservative force to reach a final configuration depends on the configuration, not the path followed, and is the potential energy added.

### Real World Connections: Energy of a Bowling Ball

How much energy does a bowling ball have? (Just think about it for a minute.)

If you are thinking that you need more information, you’re right. If we can measure the ball’s velocity, then determining its kinetic energy is simple. Note that this does require defining a reference frame in which to measure the velocity. Determining the ball’s potential energy also requires more information. You need to know its height above the ground, which requires a reference frame of the ground. Without the ground—in other words, Earth—the ball does not classically have potential energy. Potential energy comes from the interaction between the ball and the ground. Another way of thinking about this is to compare the ball’s potential energy on Earth and on the Moon. A bowling ball a certain height above Earth is going to have more potential energy than the same bowling ball the same height above the surface of the Moon, because Earth has greater mass than the Moon and therefore exerts more gravity on the ball. Thus, potential energy requires a system of at least two objects, or an object with an internal structure of at least two parts.

### Potential Energy of a Spring

First, let us obtain an expression for the potential energy stored in a spring (${\text{PE}}_{\mathrm{s}}$). We calculate the work done to stretch or compress a spring that obeys Hooke’s law. (Hooke’s law was examined in Elasticity: Stress and Strain, and states that the magnitude of force $F$ on the spring and the resulting deformation $\mathrm{\Delta}L$ are proportional, $F=k\mathrm{\Delta}L$.) (See Figure 7.10.) For our spring, we will replace $\mathrm{\Delta}L$ (the amount of deformation produced by a force $F$) by the distance $x$ that the spring is stretched or compressed along its length. So the force needed to stretch the spring has magnitude $\text{F = kx}$, where $k$ is the spring’s force constant. The force increases linearly from 0 at the start to $\text{kx}$ in the fully stretched position. The average force is $\text{kx}/2$. Thus the work done in stretching or compressing the spring is ${W}_{\mathrm{s}}=\text{Fd}=\left(\frac{\text{kx}}{2}\right)x=\frac{1}{2}{\text{kx}}^{2}$. Alternatively, we noted in Kinetic Energy and the Work-Energy Theorem that the area under a graph of $F$ vs. $x$ is the work done by the force. In Figure 7.10(c) we see that this area is also $\frac{1}{2}{\text{kx}}^{2}$. We therefore define the potential energy of a spring, ${\text{PE}}_{\mathrm{s}}$, to be

where $k$ is the spring’s force constant and $x$ is the displacement from its undeformed position. The potential energy represents the work done *on* the spring and the energy stored in it as a result of stretching or compressing it a distance $x$. The potential energy of the spring ${\text{PE}}_{\mathrm{s}}$ does not depend on the path taken; it depends only on the stretch or squeeze $x$ in the final configuration.

The equation ${\text{PE}}_{\mathrm{s}}=\frac{1}{2}{\text{kx}}^{2}$ has general validity beyond the special case for which it was derived. Potential energy can be stored in any elastic medium by deforming it. Indeed, the general definition of potential energy is energy due to position, shape, or configuration. For shape or position deformations, stored energy is ${\text{PE}}_{\mathrm{s}}=\frac{1}{2}{\text{kx}}^{2}$, where $k$ is the force constant of the particular system and $x$ is its deformation. Another example is seen in Figure 7.11 for a guitar string.

### Conservation of Mechanical Energy

Let us now consider what form the work-energy theorem takes when only conservative forces are involved. This will lead us to the conservation of energy principle. The work-energy theorem states that the net work done by all forces acting on a system equals its change in kinetic energy. In equation form, this is

If only conservative forces act, then

where ${W}_{\mathrm{c}}$ is the total work done by all conservative forces. Thus,

Now, if the conservative force, such as the gravitational force or a spring force, does work, the system loses potential energy. That is, ${W}_{\text{c}}=-\text{\Delta}\text{PE}$. Therefore,

or

This equation means that the total kinetic and potential energy is constant for any process involving only conservative forces. That is,

where i and f denote initial and final values. This equation is a form of the work-energy theorem for conservative forces; it is known as the conservation of mechanical energy principle. Remember that this applies to the extent that all the forces are conservative, so that friction is negligible. The total kinetic plus potential energy of a system is defined to be its mechanical energy, $(\text{KE}+\text{PE})$. In a system that experiences only conservative forces, there is a potential energy associated with each force, and the energy only changes form between $\text{KE}$ and the various types of $\text{PE}$, with the total energy remaining constant.

The internal energy of a system is the sum of the kinetic energies of all of its elements, plus the potential energy due to all of the interactions due to conservative forces between all of the elements.

### Real World Connections

Consider a wind-up toy, such as a car. It uses a spring system to store energy. The amount of energy stored depends only on how many times it is wound, not how quickly or slowly the winding happens. Similarly, a dart gun using compressed air stores energy in its internal structure. In this case, the energy stored inside depends only on how many times it is pumped, not how quickly or slowly the pumping is done. The total energy put into the system, whether through winding or pumping, is equal to the total energy conserved in the system (minus any energy loss in the system due to interactions between its parts, such as air leaks in the dart gun). Since the internal energy of the system is conserved, you can calculate the amount of stored energy by measuring the kinetic energy of the system (the moving car or dart) when the potential energy is released.

### Example 7.8

#### Using Conservation of Mechanical Energy to Calculate the Speed of a Toy Car

A 0.100-kg toy car is propelled by a compressed spring, as shown in Figure 7.12. The car follows a track that rises 0.180 m above the starting point. The spring is compressed 4.00 cm and has a force constant of 250.0 N/m. Assuming work done by friction to be negligible, find (a) how fast the car is going before it starts up the slope and (b) how fast it is going at the top of the slope.

#### Strategy

The spring force and the gravitational force are conservative forces, so conservation of mechanical energy can be used. Thus,

or

where $h$ is the height (vertical position) and $x$ is the compression of the spring. This general statement looks complex but becomes much simpler when we start considering specific situations. First, we must identify the initial and final conditions in a problem; then, we enter them into the last equation to solve for an unknown.

#### Solution for (a)

This part of the problem is limited to conditions just before the car is released and just after it leaves the spring. Take the initial height to be zero, so that both ${h}_{\text{i}}$ and ${h}_{\text{f}}$ are zero. Furthermore, the initial speed ${v}_{\text{i}}$ is zero and the final compression of the spring ${x}_{\text{f}}$ is zero, and so several terms in the conservation of mechanical energy equation are zero and it simplifies to

In other words, the initial potential energy in the spring is converted completely to kinetic energy in the absence of friction. Solving for the final speed and entering known values yields

#### Solution for (b)

One method of finding the speed at the top of the slope is to consider conditions just before the car is released and just after it reaches the top of the slope, completely ignoring everything in between. Doing the same type of analysis to find which terms are zero, the conservation of mechanical energy becomes

This form of the equation means that the spring’s initial potential energy is converted partly to gravitational potential energy and partly to kinetic energy. The final speed at the top of the slope will be less than at the bottom. Solving for ${v}_{\text{f}}$ and substituting known values gives

#### Discussion

Another way to solve this problem is to realize that the car’s kinetic energy before it goes up the slope is converted partly to potential energy—that is, to take the final conditions in part (a) to be the initial conditions in part (b).

### Applying the Science Practices: Potential Energy in a Spring

Suppose you are running an experiment in which two 250 g carts connected by a spring (with spring constant 120 N/m) are run into a solid block, and the compression of the spring is measured. In one run of this experiment, the spring was measured to compress from its rest length of 5.0 cm to a minimum length of 2.0 cm. What was the potential energy stored in this system?

### Answer

Note that the change in length of the spring is 3.0 cm. Hence we can apply Equation 7.42 to find that the potential energy is *PE* = (1/2)(120 N/m)(0.030 m)^{2} = 0.0541 J.

Note that, for conservative forces, we do not directly calculate the work they do; rather, we consider their effects through their corresponding potential energies, just as we did in Example 7.8. Note also that we do not consider details of the path taken—only the starting and ending points are important (as long as the path is not impossible). This assumption is usually a tremendous simplification, because the path may be complicated and forces may vary along the way.

### PhET Explorations

#### Energy Skate Park

Learn about conservation of energy with a skater dude! Build tracks, ramps and jumps for the skater and view the kinetic energy, potential energy and friction as he moves. You can also take the skater to different planets or even space!