Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
College Physics for AP® Courses

7.2 Kinetic Energy and the Work-Energy Theorem

College Physics for AP® Courses7.2 Kinetic Energy and the Work-Energy Theorem

Menu
Table of contents
  1. Preface
  2. 1 Introduction: The Nature of Science and Physics
    1. Connection for AP® Courses
    2. 1.1 Physics: An Introduction
    3. 1.2 Physical Quantities and Units
    4. 1.3 Accuracy, Precision, and Significant Figures
    5. 1.4 Approximation
    6. Glossary
    7. Section Summary
    8. Conceptual Questions
    9. Problems & Exercises
  3. 2 Kinematics
    1. Connection for AP® Courses
    2. 2.1 Displacement
    3. 2.2 Vectors, Scalars, and Coordinate Systems
    4. 2.3 Time, Velocity, and Speed
    5. 2.4 Acceleration
    6. 2.5 Motion Equations for Constant Acceleration in One Dimension
    7. 2.6 Problem-Solving Basics for One Dimensional Kinematics
    8. 2.7 Falling Objects
    9. 2.8 Graphical Analysis of One Dimensional Motion
    10. Glossary
    11. Section Summary
    12. Conceptual Questions
    13. Problems & Exercises
    14. Test Prep for AP® Courses
  4. 3 Two-Dimensional Kinematics
    1. Connection for AP® Courses
    2. 3.1 Kinematics in Two Dimensions: An Introduction
    3. 3.2 Vector Addition and Subtraction: Graphical Methods
    4. 3.3 Vector Addition and Subtraction: Analytical Methods
    5. 3.4 Projectile Motion
    6. 3.5 Addition of Velocities
    7. Glossary
    8. Section Summary
    9. Conceptual Questions
    10. Problems & Exercises
    11. Test Prep for AP® Courses
  5. 4 Dynamics: Force and Newton's Laws of Motion
    1. Connection for AP® Courses
    2. 4.1 Development of Force Concept
    3. 4.2 Newton's First Law of Motion: Inertia
    4. 4.3 Newton's Second Law of Motion: Concept of a System
    5. 4.4 Newton's Third Law of Motion: Symmetry in Forces
    6. 4.5 Normal, Tension, and Other Examples of Force
    7. 4.6 Problem-Solving Strategies
    8. 4.7 Further Applications of Newton's Laws of Motion
    9. 4.8 Extended Topic: The Four Basic Forces—An Introduction
    10. Glossary
    11. Section Summary
    12. Conceptual Questions
    13. Problems & Exercises
    14. Test Prep for AP® Courses
  6. 5 Further Applications of Newton's Laws: Friction, Drag, and Elasticity
    1. Connection for AP® Courses
    2. 5.1 Friction
    3. 5.2 Drag Forces
    4. 5.3 Elasticity: Stress and Strain
    5. Glossary
    6. Section Summary
    7. Conceptual Questions
    8. Problems & Exercises
    9. Test Prep for AP® Courses
  7. 6 Gravitation and Uniform Circular Motion
    1. Connection for AP® Courses
    2. 6.1 Rotation Angle and Angular Velocity
    3. 6.2 Centripetal Acceleration
    4. 6.3 Centripetal Force
    5. 6.4 Fictitious Forces and Non-inertial Frames: The Coriolis Force
    6. 6.5 Newton's Universal Law of Gravitation
    7. 6.6 Satellites and Kepler's Laws: An Argument for Simplicity
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
    12. Test Prep for AP® Courses
  8. 7 Work, Energy, and Energy Resources
    1. Connection for AP® Courses
    2. 7.1 Work: The Scientific Definition
    3. 7.2 Kinetic Energy and the Work-Energy Theorem
    4. 7.3 Gravitational Potential Energy
    5. 7.4 Conservative Forces and Potential Energy
    6. 7.5 Nonconservative Forces
    7. 7.6 Conservation of Energy
    8. 7.7 Power
    9. 7.8 Work, Energy, and Power in Humans
    10. 7.9 World Energy Use
    11. Glossary
    12. Section Summary
    13. Conceptual Questions
    14. Problems & Exercises
    15. Test Prep for AP® Courses
  9. 8 Linear Momentum and Collisions
    1. Connection for AP® courses
    2. 8.1 Linear Momentum and Force
    3. 8.2 Impulse
    4. 8.3 Conservation of Momentum
    5. 8.4 Elastic Collisions in One Dimension
    6. 8.5 Inelastic Collisions in One Dimension
    7. 8.6 Collisions of Point Masses in Two Dimensions
    8. 8.7 Introduction to Rocket Propulsion
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
    13. Test Prep for AP® Courses
  10. 9 Statics and Torque
    1. Connection for AP® Courses
    2. 9.1 The First Condition for Equilibrium
    3. 9.2 The Second Condition for Equilibrium
    4. 9.3 Stability
    5. 9.4 Applications of Statics, Including Problem-Solving Strategies
    6. 9.5 Simple Machines
    7. 9.6 Forces and Torques in Muscles and Joints
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
    12. Test Prep for AP® Courses
  11. 10 Rotational Motion and Angular Momentum
    1. Connection for AP® Courses
    2. 10.1 Angular Acceleration
    3. 10.2 Kinematics of Rotational Motion
    4. 10.3 Dynamics of Rotational Motion: Rotational Inertia
    5. 10.4 Rotational Kinetic Energy: Work and Energy Revisited
    6. 10.5 Angular Momentum and Its Conservation
    7. 10.6 Collisions of Extended Bodies in Two Dimensions
    8. 10.7 Gyroscopic Effects: Vector Aspects of Angular Momentum
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
    13. Test Prep for AP® Courses
  12. 11 Fluid Statics
    1. Connection for AP® Courses
    2. 11.1 What Is a Fluid?
    3. 11.2 Density
    4. 11.3 Pressure
    5. 11.4 Variation of Pressure with Depth in a Fluid
    6. 11.5 Pascal’s Principle
    7. 11.6 Gauge Pressure, Absolute Pressure, and Pressure Measurement
    8. 11.7 Archimedes’ Principle
    9. 11.8 Cohesion and Adhesion in Liquids: Surface Tension and Capillary Action
    10. 11.9 Pressures in the Body
    11. Glossary
    12. Section Summary
    13. Conceptual Questions
    14. Problems & Exercises
    15. Test Prep for AP® Courses
  13. 12 Fluid Dynamics and Its Biological and Medical Applications
    1. Connection for AP® Courses
    2. 12.1 Flow Rate and Its Relation to Velocity
    3. 12.2 Bernoulli’s Equation
    4. 12.3 The Most General Applications of Bernoulli’s Equation
    5. 12.4 Viscosity and Laminar Flow; Poiseuille’s Law
    6. 12.5 The Onset of Turbulence
    7. 12.6 Motion of an Object in a Viscous Fluid
    8. 12.7 Molecular Transport Phenomena: Diffusion, Osmosis, and Related Processes
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
    13. Test Prep for AP® Courses
  14. 13 Temperature, Kinetic Theory, and the Gas Laws
    1. Connection for AP® Courses
    2. 13.1 Temperature
    3. 13.2 Thermal Expansion of Solids and Liquids
    4. 13.3 The Ideal Gas Law
    5. 13.4 Kinetic Theory: Atomic and Molecular Explanation of Pressure and Temperature
    6. 13.5 Phase Changes
    7. 13.6 Humidity, Evaporation, and Boiling
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
    12. Test Prep for AP® Courses
  15. 14 Heat and Heat Transfer Methods
    1. Connection for AP® Courses
    2. 14.1 Heat
    3. 14.2 Temperature Change and Heat Capacity
    4. 14.3 Phase Change and Latent Heat
    5. 14.4 Heat Transfer Methods
    6. 14.5 Conduction
    7. 14.6 Convection
    8. 14.7 Radiation
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
    13. Test Prep for AP® Courses
  16. 15 Thermodynamics
    1. Connection for AP® Courses
    2. 15.1 The First Law of Thermodynamics
    3. 15.2 The First Law of Thermodynamics and Some Simple Processes
    4. 15.3 Introduction to the Second Law of Thermodynamics: Heat Engines and Their Efficiency
    5. 15.4 Carnot’s Perfect Heat Engine: The Second Law of Thermodynamics Restated
    6. 15.5 Applications of Thermodynamics: Heat Pumps and Refrigerators
    7. 15.6 Entropy and the Second Law of Thermodynamics: Disorder and the Unavailability of Energy
    8. 15.7 Statistical Interpretation of Entropy and the Second Law of Thermodynamics: The Underlying Explanation
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
    13. Test Prep for AP® Courses
  17. 16 Oscillatory Motion and Waves
    1. Connection for AP® Courses
    2. 16.1 Hooke’s Law: Stress and Strain Revisited
    3. 16.2 Period and Frequency in Oscillations
    4. 16.3 Simple Harmonic Motion: A Special Periodic Motion
    5. 16.4 The Simple Pendulum
    6. 16.5 Energy and the Simple Harmonic Oscillator
    7. 16.6 Uniform Circular Motion and Simple Harmonic Motion
    8. 16.7 Damped Harmonic Motion
    9. 16.8 Forced Oscillations and Resonance
    10. 16.9 Waves
    11. 16.10 Superposition and Interference
    12. 16.11 Energy in Waves: Intensity
    13. Glossary
    14. Section Summary
    15. Conceptual Questions
    16. Problems & Exercises
    17. Test Prep for AP® Courses
  18. 17 Physics of Hearing
    1. Connection for AP® Courses
    2. 17.1 Sound
    3. 17.2 Speed of Sound, Frequency, and Wavelength
    4. 17.3 Sound Intensity and Sound Level
    5. 17.4 Doppler Effect and Sonic Booms
    6. 17.5 Sound Interference and Resonance: Standing Waves in Air Columns
    7. 17.6 Hearing
    8. 17.7 Ultrasound
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
    13. Test Prep for AP® Courses
  19. 18 Electric Charge and Electric Field
    1. Connection for AP® Courses
    2. 18.1 Static Electricity and Charge: Conservation of Charge
    3. 18.2 Conductors and Insulators
    4. 18.3 Conductors and Electric Fields in Static Equilibrium
    5. 18.4 Coulomb’s Law
    6. 18.5 Electric Field: Concept of a Field Revisited
    7. 18.6 Electric Field Lines: Multiple Charges
    8. 18.7 Electric Forces in Biology
    9. 18.8 Applications of Electrostatics
    10. Glossary
    11. Section Summary
    12. Conceptual Questions
    13. Problems & Exercises
    14. Test Prep for AP® Courses
  20. 19 Electric Potential and Electric Field
    1. Connection for AP® Courses
    2. 19.1 Electric Potential Energy: Potential Difference
    3. 19.2 Electric Potential in a Uniform Electric Field
    4. 19.3 Electrical Potential Due to a Point Charge
    5. 19.4 Equipotential Lines
    6. 19.5 Capacitors and Dielectrics
    7. 19.6 Capacitors in Series and Parallel
    8. 19.7 Energy Stored in Capacitors
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
    13. Test Prep for AP® Courses
  21. 20 Electric Current, Resistance, and Ohm's Law
    1. Connection for AP® Courses
    2. 20.1 Current
    3. 20.2 Ohm’s Law: Resistance and Simple Circuits
    4. 20.3 Resistance and Resistivity
    5. 20.4 Electric Power and Energy
    6. 20.5 Alternating Current versus Direct Current
    7. 20.6 Electric Hazards and the Human Body
    8. 20.7 Nerve Conduction–Electrocardiograms
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
    13. Test Prep for AP® Courses
  22. 21 Circuits, Bioelectricity, and DC Instruments
    1. Connection for AP® Courses
    2. 21.1 Resistors in Series and Parallel
    3. 21.2 Electromotive Force: Terminal Voltage
    4. 21.3 Kirchhoff’s Rules
    5. 21.4 DC Voltmeters and Ammeters
    6. 21.5 Null Measurements
    7. 21.6 DC Circuits Containing Resistors and Capacitors
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
    12. Test Prep for AP® Courses
  23. 22 Magnetism
    1. Connection for AP® Courses
    2. 22.1 Magnets
    3. 22.2 Ferromagnets and Electromagnets
    4. 22.3 Magnetic Fields and Magnetic Field Lines
    5. 22.4 Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field
    6. 22.5 Force on a Moving Charge in a Magnetic Field: Examples and Applications
    7. 22.6 The Hall Effect
    8. 22.7 Magnetic Force on a Current-Carrying Conductor
    9. 22.8 Torque on a Current Loop: Motors and Meters
    10. 22.9 Magnetic Fields Produced by Currents: Ampere’s Law
    11. 22.10 Magnetic Force between Two Parallel Conductors
    12. 22.11 More Applications of Magnetism
    13. Glossary
    14. Section Summary
    15. Conceptual Questions
    16. Problems & Exercises
    17. Test Prep for AP® Courses
  24. 23 Electromagnetic Induction, AC Circuits, and Electrical Technologies
    1. Connection for AP® Courses
    2. 23.1 Induced Emf and Magnetic Flux
    3. 23.2 Faraday’s Law of Induction: Lenz’s Law
    4. 23.3 Motional Emf
    5. 23.4 Eddy Currents and Magnetic Damping
    6. 23.5 Electric Generators
    7. 23.6 Back Emf
    8. 23.7 Transformers
    9. 23.8 Electrical Safety: Systems and Devices
    10. 23.9 Inductance
    11. 23.10 RL Circuits
    12. 23.11 Reactance, Inductive and Capacitive
    13. 23.12 RLC Series AC Circuits
    14. Glossary
    15. Section Summary
    16. Conceptual Questions
    17. Problems & Exercises
    18. Test Prep for AP® Courses
  25. 24 Electromagnetic Waves
    1. Connection for AP® Courses
    2. 24.1 Maxwell’s Equations: Electromagnetic Waves Predicted and Observed
    3. 24.2 Production of Electromagnetic Waves
    4. 24.3 The Electromagnetic Spectrum
    5. 24.4 Energy in Electromagnetic Waves
    6. Glossary
    7. Section Summary
    8. Conceptual Questions
    9. Problems & Exercises
    10. Test Prep for AP® Courses
  26. 25 Geometric Optics
    1. Connection for AP® Courses
    2. 25.1 The Ray Aspect of Light
    3. 25.2 The Law of Reflection
    4. 25.3 The Law of Refraction
    5. 25.4 Total Internal Reflection
    6. 25.5 Dispersion: The Rainbow and Prisms
    7. 25.6 Image Formation by Lenses
    8. 25.7 Image Formation by Mirrors
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
    13. Test Prep for AP® Courses
  27. 26 Vision and Optical Instruments
    1. Connection for AP® Courses
    2. 26.1 Physics of the Eye
    3. 26.2 Vision Correction
    4. 26.3 Color and Color Vision
    5. 26.4 Microscopes
    6. 26.5 Telescopes
    7. 26.6 Aberrations
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
    12. Test Prep for AP® Courses
  28. 27 Wave Optics
    1. Connection for AP® Courses
    2. 27.1 The Wave Aspect of Light: Interference
    3. 27.2 Huygens's Principle: Diffraction
    4. 27.3 Young’s Double Slit Experiment
    5. 27.4 Multiple Slit Diffraction
    6. 27.5 Single Slit Diffraction
    7. 27.6 Limits of Resolution: The Rayleigh Criterion
    8. 27.7 Thin Film Interference
    9. 27.8 Polarization
    10. 27.9 *Extended Topic* Microscopy Enhanced by the Wave Characteristics of Light
    11. Glossary
    12. Section Summary
    13. Conceptual Questions
    14. Problems & Exercises
    15. Test Prep for AP® Courses
  29. 28 Special Relativity
    1. Connection for AP® Courses
    2. 28.1 Einstein’s Postulates
    3. 28.2 Simultaneity And Time Dilation
    4. 28.3 Length Contraction
    5. 28.4 Relativistic Addition of Velocities
    6. 28.5 Relativistic Momentum
    7. 28.6 Relativistic Energy
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
    12. Test Prep for AP® Courses
  30. 29 Introduction to Quantum Physics
    1. Connection for AP® Courses
    2. 29.1 Quantization of Energy
    3. 29.2 The Photoelectric Effect
    4. 29.3 Photon Energies and the Electromagnetic Spectrum
    5. 29.4 Photon Momentum
    6. 29.5 The Particle-Wave Duality
    7. 29.6 The Wave Nature of Matter
    8. 29.7 Probability: The Heisenberg Uncertainty Principle
    9. 29.8 The Particle-Wave Duality Reviewed
    10. Glossary
    11. Section Summary
    12. Conceptual Questions
    13. Problems & Exercises
    14. Test Prep for AP® Courses
  31. 30 Atomic Physics
    1. Connection for AP® Courses
    2. 30.1 Discovery of the Atom
    3. 30.2 Discovery of the Parts of the Atom: Electrons and Nuclei
    4. 30.3 Bohr’s Theory of the Hydrogen Atom
    5. 30.4 X Rays: Atomic Origins and Applications
    6. 30.5 Applications of Atomic Excitations and De-Excitations
    7. 30.6 The Wave Nature of Matter Causes Quantization
    8. 30.7 Patterns in Spectra Reveal More Quantization
    9. 30.8 Quantum Numbers and Rules
    10. 30.9 The Pauli Exclusion Principle
    11. Glossary
    12. Section Summary
    13. Conceptual Questions
    14. Problems & Exercises
    15. Test Prep for AP® Courses
  32. 31 Radioactivity and Nuclear Physics
    1. Connection for AP® Courses
    2. 31.1 Nuclear Radioactivity
    3. 31.2 Radiation Detection and Detectors
    4. 31.3 Substructure of the Nucleus
    5. 31.4 Nuclear Decay and Conservation Laws
    6. 31.5 Half-Life and Activity
    7. 31.6 Binding Energy
    8. 31.7 Tunneling
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
    13. Test Prep for AP® Courses
  33. 32 Medical Applications of Nuclear Physics
    1. Connection for AP® Courses
    2. 32.1 Medical Imaging and Diagnostics
    3. 32.2 Biological Effects of Ionizing Radiation
    4. 32.3 Therapeutic Uses of Ionizing Radiation
    5. 32.4 Food Irradiation
    6. 32.5 Fusion
    7. 32.6 Fission
    8. 32.7 Nuclear Weapons
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
    13. Test Prep for AP® Courses
  34. 33 Particle Physics
    1. Connection for AP® Courses
    2. 33.1 The Yukawa Particle and the Heisenberg Uncertainty Principle Revisited
    3. 33.2 The Four Basic Forces
    4. 33.3 Accelerators Create Matter from Energy
    5. 33.4 Particles, Patterns, and Conservation Laws
    6. 33.5 Quarks: Is That All There Is?
    7. 33.6 GUTs: The Unification of Forces
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
    12. Test Prep for AP® Courses
  35. 34 Frontiers of Physics
    1. Connection for AP® Courses
    2. 34.1 Cosmology and Particle Physics
    3. 34.2 General Relativity and Quantum Gravity
    4. 34.3 Superstrings
    5. 34.4 Dark Matter and Closure
    6. 34.5 Complexity and Chaos
    7. 34.6 High-Temperature Superconductors
    8. 34.7 Some Questions We Know to Ask
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  36. A | Atomic Masses
  37. B | Selected Radioactive Isotopes
  38. C | Useful Information
  39. D | Glossary of Key Symbols and Notation
  40. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
    11. Chapter 11
    12. Chapter 12
    13. Chapter 13
    14. Chapter 14
    15. Chapter 15
    16. Chapter 16
    17. Chapter 17
    18. Chapter 18
    19. Chapter 19
    20. Chapter 20
    21. Chapter 21
    22. Chapter 22
    23. Chapter 23
    24. Chapter 24
    25. Chapter 25
    26. Chapter 26
    27. Chapter 27
    28. Chapter 28
    29. Chapter 29
    30. Chapter 30
    31. Chapter 31
    32. Chapter 32
    33. Chapter 33
    34. Chapter 34
  41. Index

Learning Objectives

By the end of this section, you will be able to:

  • Explain work as a transfer of energy and net work as the work done by the net force.
  • Explain and apply the work-energy theorem.

The information presented in this section supports the following AP® learning objectives and science practices:

  • 3.E.1.1 The student is able to make predictions about the changes in kinetic energy of an object based on considerations of the direction of the net force on the object as the object moves. (S.P. 6.4, 7.2)
  • 3.E.1.2 The student is able to use net force and velocity vectors to determine qualitatively whether kinetic energy of an object would increase, decrease, or remain unchanged. (S.P. 1.4)
  • 3.E.1.3 The student is able to use force and velocity vectors to determine qualitatively or quantitatively the net force exerted on an object and qualitatively whether kinetic energy of that object would increase, decrease, or remain unchanged. (S.P. 1.4, 2.2)
  • 3.E.1.4 The student is able to apply mathematical routines to determine the change in kinetic energy of an object given the forces on the object and the displacement of the object. (S.P. 2.2)
  • 4.C.1.1 The student is able to calculate the total energy of a system and justify the mathematical routines used in the calculation of component types of energy within the system whose sum is the total energy. (S.P. 1.4, 2.1, 2.2)
  • 4.C.2.1 The student is able to make predictions about the changes in the mechanical energy of a system when a component of an external force acts parallel or antiparallel to the direction of the displacement of the center of mass. (S.P. 6.4)
  • 4.C.2.2 The student is able to apply the concepts of conservation of energy and the work-energy theorem to determine qualitatively and/or quantitatively that work done on a two-object system in linear motion will change the kinetic energy of the center of mass of the system, the potential energy of the systems, and/or the internal energy of the system. (S.P. 1.4, 2.2, 7.2)
  • 5.B.5.3 The student is able to predict and calculate from graphical data the energy transfer to or work done on an object or system from information about a force exerted on the object or system through a distance. (S.P. 1.5, 2.2, 6.4)

Work Transfers Energy

What happens to the work done on a system? Energy is transferred into the system, but in what form? Does it remain in the system or move on? The answers depend on the situation. For example, if the lawn mower in Figure 7.2(a) is pushed just hard enough to keep it going at a constant speed, then energy put into the mower by the person is removed continuously by friction, and eventually leaves the system in the form of heat transfer. In contrast, work done on the briefcase by the person carrying it up stairs in Figure 7.2(d) is stored in the briefcase-Earth system and can be recovered at any time, as shown in Figure 7.2(e). In fact, the building of the pyramids in ancient Egypt is an example of storing energy in a system by doing work on the system. Some of the energy imparted to the stone blocks in lifting them during construction of the pyramids remains in the stone-Earth system and has the potential to do work.

In this section we begin the study of various types of work and forms of energy. We will find that some types of work leave the energy of a system constant, for example, whereas others change the system in some way, such as making it move. We will also develop definitions of important forms of energy, such as the energy of motion.

Net Work and the Work-Energy Theorem

We know from the study of Newton’s laws in Dynamics: Force and Newton's Laws of Motion that net force causes acceleration. We will see in this section that work done by the net force gives a system energy of motion, and in the process we will also find an expression for the energy of motion.

Let us start by considering the total, or net, work done on a system. Net work is defined to be the sum of work done on an object. The net work can be written in terms of the net force on an object. FnetFnet size 12{F rSub { size 8{"net"} } } {} In equation form, this is Wnet=FnetdcosθWnet=Fnetdcosθ size 12{W rSub { size 8{"net"} } =F rSub { size 8{"net"} } d"cos"θ} {} where θθ size 12{θ} {} is the angle between the force vector and the displacement vector.

Figure 7.3(a) shows a graph of force versus displacement for the component of the force in the direction of the displacement—that is, an FcosθFcosθ size 12{F"cos"θ} {} vs. dd size 12{d} {} graph. In this case, FcosθFcosθ size 12{F"cos"θ} {} is constant. You can see that the area under the graph is FdcosθFdcosθ size 12{F"cos"θ} {}, or the work done. Figure 7.3(b) shows a more general process where the force varies. The area under the curve is divided into strips, each having an average force (Fcosθ)i(ave)(Fcosθ)i(ave) size 12{ \( F"cos"θ \) rSub { size 8{i \( "ave" \) } } } {}. The work done is (Fcosθ)i(ave)di(Fcosθ)i(ave)di size 12{ \( F"cos"θ \) rSub { size 8{i \( "ave" \) } } d rSub { size 8{i} } } {} for each strip, and the total work done is the sum of the WiWi size 12{W rSub { size 8{i} } } {}. Thus the total work done is the total area under the curve, a useful property to which we shall refer later.

Two drawings labele a and b. (a) A graph of force component F cosine theta versus distance d. d is along the x axis and F cosine theta is along the y axis. A line of length d is drawn parallel to the horizontal axis for some value of F cosine theta. Area under this line in the graph is shaded and is equal to F cosine theta multiplied by d. F d cosine theta is equal to work W. (b) A graph of force component F cosine theta versus distance d. d is along the x axis and F cosine theta is along the y axis. There is an inclined line and the area under it is divided into many thin vertical strips of width d sub i. The area of one vertical stripe is equal to average value of F cosine theta times d sub i which equals to work W sub i.
Figure 7.3 (a) A graph of FcosθFcosθ vs. dd size 12{d} {}, when FcosθFcosθ size 12{F"cos"θ} {} is constant. The area under the curve represents the work done by the force. (b) A graph of FcosθFcosθ size 12{F"cos"q} {} vs. dd size 12{d} {} in which the force varies. The work done for each interval is the area of each strip; thus, the total area under the curve equals the total work done.

Real World Connections: Work and Direction

Consider driving in a car. While moving, you have forward velocity and therefore kinetic energy. When you hit the brakes, they exert a force opposite to your direction of motion (acting through the wheels). The brakes do work on your car and reduce the kinetic energy. Similarly, when you accelerate, the engine (acting through the wheels) exerts a force in the direction of motion. The engine does work on your car, and increases the kinetic energy. Finally, if you go around a corner at a constant speed, you have the same kinetic energy both before and after the corner. The force exerted by the engine was perpendicular to the direction of motion, and therefore did no work and did not change the kinetic energy.

Net work will be simpler to examine if we consider a one-dimensional situation where a force is used to accelerate an object in a direction parallel to its initial velocity. Such a situation occurs for the package on the roller belt conveyor system shown in Figure 7.4.

A package shown on a roller belt pushed with a force F towards the right shown by a vector F sub app equal to one hundred and twenty newtons. A vector w is in the downward direction starting from the bottom of the package and the reaction force N on the package is shown by the vector N pointing upwards at the bottom of the package. A frictional force vector of five point zero zero newtons acts on the package leftwards. The displacement d is shown by the vector pointing to the right with a value of zero point eight zero zero meters.
Figure 7.4 A package on a roller belt is pushed horizontally through a distance d d .

The force of gravity and the normal force acting on the package are perpendicular to the displacement and do no work. Moreover, they are also equal in magnitude and opposite in direction so they cancel in calculating the net force. The net force arises solely from the horizontal applied force FappFapp and the horizontal friction force ff. Thus, as expected, the net force is parallel to the displacement, so that θ=θ= and cosθ=1cosθ=1 size 12{"cos"q=1} {}, and the net work is given by

Wnet=Fnetd.Wnet=Fnetd. size 12{W rSub { size 8{"net"} } =F rSub { size 8{"net"} } d} {}
7.7

The effect of the net force FnetFnet size 12{F rSub { size 8{"net"} } } {} is to accelerate the package from v0v0 size 12{v rSub { size 8{0} } } {} to vv size 12{v} {}. The kinetic energy of the package increases, indicating that the net work done on the system is positive. (See Example 7.2.) By using Newton’s second law, and doing some algebra, we can reach an interesting conclusion. Substituting Fnet=maFnet=ma size 12{F rSub { size 8{"net"} } = ital "ma"} {} from Newton’s second law gives

Wnet=mad.Wnet=mad. size 12{W rSub { size 8{"net"} } = ital "mad"} {}
7.8

To get a relationship between net work and the speed given to a system by the net force acting on it, we take d=xx0d=xx0 size 12{d=x - x rSub { size 8{0} } } {} and use the equation studied in Motion Equations for Constant Acceleration in One Dimension for the change in speed over a distance dd if the acceleration has the constant value aa; namely, v2=v02+2adv2=v02+2ad (note that aa appears in the expression for the net work). Solving for acceleration gives a=v2v022da=v2v022d. When aa is substituted into the preceding expression for WnetWnet, we obtain

Wnet=mv2v022dd.Wnet=mv2v022dd.
7.9

The dd size 12{d} {} cancels, and we rearrange this to obtain

W net = 1 2 mv 2 1 2 mv 0  2 . W net = 1 2 mv 2 1 2 mv 0  2 . size 12{w"" lSub { size 8{ ital "net"} } = { {1} over {2} } ital "mv" rSup { size 8{2} } - { {1} over {2} } ital "mv""" lSub { size 8{0} } "" lSup { size 8{2} } "." } {}
7.10

This expression is called the work-energy theorem, and it actually applies in general (even for forces that vary in direction and magnitude), although we have derived it for the special case of a constant force parallel to the displacement. The theorem implies that the net work on a system equals the change in the quantity 12mv212mv2 size 12{ { {1} over {2} } ital "mv" rSup { size 8{2} } } {}. This quantity is our first example of a form of energy.

The Work-Energy Theorem

The net work on a system equals the change in the quantity 12mv212mv2 size 12{ { { size 8{1} } over { size 8{2} } } ital "mv" rSup { size 8{2} } } {}.

W net = 1 2 mv 2 1 2 mv 0  2 W net = 1 2 mv 2 1 2 mv 0  2 size 12{w"" lSub { size 8{ ital "net"} } = { {1} over {2} } ital "mv" rSup { size 8{2} } - { {1} over {2} } ital "mv""" lSub { size 8{0} } "" lSup { size 8{2} } "." } {}
7.11

The quantity 12mv212mv2 size 12{ { {1} over {2} } ital "mv" rSup { size 8{2} } } {} in the work-energy theorem is defined to be the translational kinetic energy (KE) of a mass mm size 12{m} {} moving at a speed vv size 12{v} {}. (Translational kinetic energy is distinct from rotational kinetic energy, which is considered later.) In equation form, the translational kinetic energy,

KE = 1 2 mv 2 , KE = 1 2 mv 2 , size 12{"KE"= { {1} over {2} } ital "mv" rSup { size 8{2} } ,} {}
7.12

is the energy associated with translational motion. Kinetic energy is a form of energy associated with the motion of a particle, single body, or system of objects moving together.

We are aware that it takes energy to get an object, like a car or the package in Figure 7.4, up to speed, but it may be a bit surprising that kinetic energy is proportional to speed squared. This proportionality means, for example, that a car traveling at 100 km/h has four times the kinetic energy it has at 50 km/h, helping to explain why high-speed collisions are so devastating. We will now consider a series of examples to illustrate various aspects of work and energy.

Applying the Science Practices: Cars on a Hill

Assemble a ramp suitable for rolling some toy cars up or down. Then plan a series of experiments to determine how the direction of a force relative to the velocity of an object alters the kinetic energy of the object. Note that gravity will be pointing down in all cases. What happens if you start the car at the top? How about at the bottom, with an initial velocity that is increasing? If your ramp is wide enough, what happens if you send the toy car straight across? Does varying the surface of the ramp change your results?

Sample Response: When the toy car is going down the ramp, with a component of gravity in the same direction, the kinetic energy increases. Sending the car up the ramp decreases the kinetic energy, as gravity is opposing the motion. Sending the car sideways should result in little to no change. If you have a surface that generates more friction than a smooth surface (carpet), note that the friction always opposed the motion, and hence decreases the kinetic energy.

Example 7.2

Calculating the Kinetic Energy of a Package

Suppose a 30.0-kg package on the roller belt conveyor system in Figure 7.4 is moving at 0.500 m/s. What is its kinetic energy?

Strategy

Because the mass mm and speed vv are given, the kinetic energy can be calculated from its definition as given in the equation KE=12mv2KE=12mv2 size 12{"KE"= { {1} over {2} } ital "mv" rSup { size 8{2} } } {}.

Solution

The kinetic energy is given by

KE = 1 2 mv 2 . KE = 1 2 mv 2 . size 12{"KE"= { {1} over {2} } ital "mv" rSup { size 8{2} } "." } {}
7.13

Entering known values gives

KE = 0 . 5 ( 30.0 kg ) ( 0.500 m/s ) 2 , KE = 0 . 5 ( 30.0 kg ) ( 0.500 m/s ) 2 , size 12{"KE"=0 "." 5 \( "30" "." 0" kg" \) \( 0 "." "500"" m/s" \) rSup { size 8{2} } ,} {}
7.14

which yields

KE = 3.75 kg m 2 /s 2 = 3.75 J. KE = 3.75 kg m 2 /s 2 = 3.75 J. size 12{"KE"=3 "." "75"`"kg" cdot m rSup { size 8{2} } "/s" rSup { size 8{2} } =3 "." "75"`J "." } {}
7.15

Discussion

Note that the unit of kinetic energy is the joule, the same as the unit of work, as mentioned when work was first defined. It is also interesting that, although this is a fairly massive package, its kinetic energy is not large at this relatively low speed. This fact is consistent with the observation that people can move packages like this without exhausting themselves.

Real World Connections: Center of Mass

Suppose we have two experimental carts, of equal mass, latched together on a track with a compressed spring between them. When the latch is released, the spring does 10 J of work on the carts (we’ll see how in a couple of sections). The carts move relative to the spring, which is the center of mass of the system. However, the center of mass stays fixed. How can we consider the kinetic energy of this system?

By the work-energy theorem, the work done by the spring on the carts must turn into kinetic energy. So this system has 10 J of kinetic energy. The total kinetic energy of the system is the kinetic energy of the center of mass of the system relative to the fixed origin plus the kinetic energy of each cart relative to the center of mass. We know that the center of mass relative to the fixed origin does not move, and therefore all of the kinetic energy must be distributed among the carts relative to the center of mass. Since the carts have equal mass, they each receive an equal amount of kinetic energy, so each cart has 5.0 J of kinetic energy.

In our example, the forces between the spring and each cart are internal to the system. According to Newton’s third law, these internal forces will cancel since they are equal and opposite in direction. However, this does not imply that these internal forces will not do work. Thus, the change in kinetic energy of the system is caused by work done by the force of the spring, and results in the motion of the two carts relative to the center of mass.

Example 7.3

Determining the Work to Accelerate a Package

Suppose that you push on the 30.0-kg package in Figure 7.4 with a constant force of 120 N through a distance of 0.800 m, and that the opposing friction force averages 5.00 N.

(a) Calculate the net work done on the package. (b) Solve the same problem as in part (a), this time by finding the work done by each force that contributes to the net force.

Strategy and Concept for (a)

This is a motion in one dimension problem, because the downward force (from the weight of the package) and the normal force have equal magnitude and opposite direction, so that they cancel in calculating the net force, while the applied force, friction, and the displacement are all horizontal. (See Figure 7.4.) As expected, the net work is the net force times distance.

Solution for (a)

The net force is the push force minus friction, or Fnet = 120 N – 5.00 N = 115 NFnet = 120 N – 5.00 N = 115 N size 12{F rSub { size 8{"net"} } " = 120 N – 5" "." "00 N = 115 N"} {}. Thus the net work is

W net = F net d = 115 N 0.800 m = 92.0 N m = 92.0 J. W net = F net d = 115 N 0.800 m = 92.0 N m = 92.0 J. alignl { stack { size 12{W rSub { size 8{"net"} } =F rSub { size 8{"net"} } d= left ("115"`N right ) left (0 "." "800"`m right )} {} # " "="92" "." 0`N cdot m="92" "." 0`J "." {} } } {}
7.16

Discussion for (a)

This value is the net work done on the package. The person actually does more work than this, because friction opposes the motion. Friction does negative work and removes some of the energy the person expends and converts it to thermal energy. The net work equals the sum of the work done by each individual force.

Strategy and Concept for (b)

The forces acting on the package are gravity, the normal force, the force of friction, and the applied force. The normal force and force of gravity are each perpendicular to the displacement, and therefore do no work.

Solution for (b)

The applied force does work.

W app = F app d cos = F app d = 120 N 0.800 m = 96.0 J W app = F app d cos = F app d = 120 N 0.800 m = 96.0 J alignl { stack { size 12{W rSub { size 8{"app"} } =F rSub { size 8{"app"} } d"cos" left (0° right )=F rSub { size 8{"app"} } d} {} # " "= left ("120 N" right ) left (0 "." "800"" m" right ) {} # " "=" 96" "." "0 J" "." {} } } {}
7.17

The friction force and displacement are in opposite directions, so that θ=180ºθ=180º size 12{θ="180"°} {}, and the work done by friction is

W fr = F fr d cos 180º = F fr d = 5.00 N 0.800 m = 4.00 J. W fr = F fr d cos 180º = F fr d = 5.00 N 0.800 m = 4.00 J. alignl { stack { size 12{W rSub { size 8{"fr"} } =F rSub { size 8{"fr"} } d"cos" left ("180"° right )= - F rSub { size 8{"fr"} } d} {} # " "= - left (5 "." "00 N" right ) left (0 "." "800"" m" right ) {} # ital " "= - 4 "." "00" J "." {} } } {}
7.18

So the amounts of work done by gravity, by the normal force, by the applied force, and by friction are, respectively,

W gr = 0, W N = 0, W app = 96.0 J, W fr = 4.00 J. W gr = 0, W N = 0, W app = 96.0 J, W fr = 4.00 J. alignl { stack { size 12{W rSub { size 8{"gr"} } =0,} {} # W rSub { size 8{N} } =0, {} # W rSub { size 8{"app"} } ="96" "." 0" J," {} # W rSub { size 8{"fr"} } = - 4 "." "00"" J" "." {} } } {}
7.19

The total work done as the sum of the work done by each force is then seen to be

Wtotal=Wgr+WN+Wapp+Wfr=92.0 J.Wtotal=Wgr+WN+Wapp+Wfr=92.0 J. size 12{W rSub { size 8{"total"} } =W rSub { size 8{"gr"} } +W rSub { size 8{N} } +W rSub { size 8{"app"} } +W rSub { size 8{"fr"} } ="92" "." 0" J"} {}
7.20

Discussion for (b)

The calculated total work WtotalWtotal size 12{W rSub { size 8{"total"} } } {} as the sum of the work by each force agrees, as expected, with the work WnetWnet size 12{W rSub { size 8{"net"} } } {} done by the net force. The work done by a collection of forces acting on an object can be calculated by either approach.

Example 7.4

Determining Speed from Work and Energy

Find the speed of the package in Figure 7.4 at the end of the push, using work and energy concepts.

Strategy

Here the work-energy theorem can be used, because we have just calculated the net work, WnetWnet size 12{W rSub { size 8{"net"} } } {}, and the initial kinetic energy, 1 2 m v 0 2 1 2 m v 0 2 size 12{ { {1} over {2} } ital "mv" rSub { size 8{0} rSup { size 8{2} } } } {}. These calculations allow us to find the final kinetic energy, 12mv212mv2 size 12{ { {1} over {2} } ital "mv" rSup { size 8{2} } } {}, and thus the final speed vv size 12{v} {}.

Solution

The work-energy theorem in equation form is

W net = 1 2 mv 2 1 2 m v 0 2 . W net = 1 2 mv 2 1 2 m v 0 2 . size 12{W rSub { size 8{"net"} } = { {1} over {2} } ital "mv" rSup { size 8{2} } - { {1} over {2} } ital "mv" rSub { size 8{0} rSup { size 8{2} } } "." } {}
7.21

Solving for 12mv212mv2 size 12{ { {1} over {2} } ital "mv" rSup { size 8{2} } } {} gives

1 2 mv 2 = W net + 1 2 m v 0 2 . 1 2 mv 2 = W net + 1 2 m v 0 2 . size 12{ { {1} over {2} } ital "mv""" lSup { size 8{2} } =w rSub { size 8{ ital "net"} } + { {1} over {2} } ital "mv""" lSub { size 8{0} } "" lSup { size 8{2} } "." } {}
7.22

Thus,

12mv2=92.0 J+3.75 J=95.75 J.12mv2=92.0 J+3.75 J=95.75 J. size 12{ { {1} over {2} } ital "mv" rSup { size 8{2} } ="92" "." 0`J+3 "." "75"`J="95" "." "75"`J} {}
7.23

Solving for the final speed as requested and entering known values gives

v = 2 (95.75 J) m = 191.5 kg m 2 /s 2 30.0 kg = 2.53 m/s. v = 2 (95.75 J) m = 191.5 kg m 2 /s 2 30.0 kg = 2.53 m/s.
7.24

Discussion

Using work and energy, we not only arrive at an answer, we see that the final kinetic energy is the sum of the initial kinetic energy and the net work done on the package. This means that the work indeed adds to the energy of the package.

Example 7.5

Work and Energy Can Reveal Distance, Too

How far does the package in Figure 7.4 coast after the push, assuming friction remains constant? Use work and energy considerations.

Strategy

We know that once the person stops pushing, friction will bring the package to rest. In terms of energy, friction does negative work until it has removed all of the package’s kinetic energy. The work done by friction is the force of friction times the distance traveled times the cosine of the angle between the friction force and displacement; hence, this gives us a way of finding the distance traveled after the person stops pushing.

Solution

The normal force and force of gravity cancel in calculating the net force. The horizontal friction force is then the net force, and it acts opposite to the displacement, so θ=180ºθ=180º. To reduce the kinetic energy of the package to zero, the work WfrWfr by friction must be minus the kinetic energy that the package started with plus what the package accumulated due to the pushing. Thus Wfr=95.75 JWfr=95.75 J. Furthermore, Wfr=fdcosθ= –fdWfr=fdcosθ= –fd, where dd is the distance it takes to stop. Thus,

d=Wfrf=95.75 J5.00 N,d=Wfrf=95.75 J5.00 N, size 12{ { {d}} sup { ' }= - { {W rSub { size 8{"fr"} } } over {f} } = - { { - "95" "." "75"`J} over {5 "." "00 N"} } } {}
7.25

and so

d=19.2 m.d=19.2 m. size 12{ { {d}} sup { ' }="19" "." 2" m"} {}
7.26

Discussion

This is a reasonable distance for a package to coast on a relatively friction-free conveyor system. Note that the work done by friction is negative (the force is in the opposite direction of motion), so it removes the kinetic energy.

Some of the examples in this section can be solved without considering energy, but at the expense of missing out on gaining insights about what work and energy are doing in this situation. On the whole, solutions involving energy are generally shorter and easier than those using kinematics and dynamics alone.

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/college-physics-ap-courses/pages/1-connection-for-ap-r-courses
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/college-physics-ap-courses/pages/1-connection-for-ap-r-courses
Citation information

© Mar 3, 2022 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.