Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Chemistry: Atoms First 2e

4.3 Chemical Nomenclature

Chemistry: Atoms First 2e4.3 Chemical Nomenclature

Learning Objectives

By the end of this section, you will be able to:

  • Derive names for common types of inorganic compounds using a systematic approach

Nomenclature, a collection of rules for naming things, is important in science and in many other situations. This module describes an approach that is used to name simple ionic and molecular compounds, such as NaCl, CaCO3, and N2O4. The simplest of these are binary compounds, those containing only two elements, but we will also consider how to name ionic compounds containing polyatomic ions, and one specific, very important class of compounds known as acids (subsequent chapters in this text will focus on these compounds in great detail). We will limit our attention here to inorganic compounds, compounds that are composed principally of elements other than carbon, and will follow the nomenclature guidelines proposed by IUPAC. The rules for organic compounds, in which carbon is the principle element, will be treated in a later chapter on organic chemistry.

Ionic Compounds

To name an inorganic compound, we need to consider the answers to several questions. First, is the compound ionic or molecular? If the compound is ionic, does the metal form ions of only one type (fixed charge) or more than one type (variable charge)? Are the ions monatomic or polyatomic? If the compound is molecular, does it contain hydrogen? If so, does it also contain oxygen? From the answers we derive, we place the compound in an appropriate category and then name it accordingly.

Compounds Containing Only Monatomic Ions

The name of a binary compound containing monatomic ions consists of the name of the cation (the name of the metal) followed by the name of the anion (the name of the nonmetallic element with its ending replaced by the suffix –ide). Some examples are given in Table 4.2.

Names of Some Ionic Compounds
NaCl, sodium chloride Na2O, sodium oxide
KBr, potassium bromide CdS, cadmium sulfide
CaI2, calcium iodide Mg3N2, magnesium nitride
CsF, cesium fluoride Ca3P2, calcium phosphide
LiCl, lithium chloride Al4C3, aluminum carbide
Table 4.2

Compounds Containing Polyatomic Ions

Compounds containing polyatomic ions are named similarly to those containing only monatomic ions, i.e., by naming first the cation and then the anion. Examples are shown in Table 4.3.

Names of Some Polyatomic Ionic Compounds
KC2H3O2, potassium acetate NH4Cl, ammonium chloride
NaHCO3, sodium bicarbonate CaSO4, calcium sulfate
Al2(CO3)3, aluminum carbonate Mg3(PO4)2, magnesium phosphate
Table 4.3

Chemistry in Everyday Life

Ionic Compounds in Your Cabinets

Every day you encounter and use a large number of ionic compounds. Some of these compounds, where they are found, and what they are used for are listed in Table 4.4. Look at the label or ingredients list on the various products that you use during the next few days, and see if you run into any of those in this table, or find other ionic compounds that you could now name or write as a formula.

Everyday Ionic Compounds
Ionic Compound Use
NaCl, sodium chloride ordinary table salt
KI, potassium iodide added to “iodized” salt for thyroid health
NaF, sodium fluoride ingredient in toothpaste
NaHCO3, sodium bicarbonate baking soda; used in cooking (and as antacid)
Na2CO3, sodium carbonate washing soda; used in cleaning agents
NaOCl, sodium hypochlorite active ingredient in household bleach
CaCO3 calcium carbonate ingredient in antacids
Mg(OH)2, magnesium hydroxide ingredient in antacids
Al(OH)3, aluminum hydroxide ingredient in antacids
NaOH, sodium hydroxide lye; used as drain cleaner
K3PO4, potassium phosphate food additive (many purposes)
MgSO4, magnesium sulfate added to purified water
Na2HPO4, sodium hydrogen phosphate anti-caking agent; used in powdered products
Na2SO3, sodium sulfite preservative
Table 4.4

Compounds Containing a Metal Ion with a Variable Charge

Most of the transition metals and some main group metals can form two or more cations with different charges. Compounds of these metals with nonmetals are named with the same method as compounds in the first category, except the charge of the metal ion is specified by a Roman numeral in parentheses after the name of the metal. The charge of the metal ion is determined from the formula of the compound and the charge of the anion. For example, consider binary ionic compounds of iron and chlorine. Iron typically exhibits a charge of either 2+ or 3+ (see Figure 3.40), and the two corresponding compound formulas are FeCl2 and FeCl3. The simplest name, “iron chloride,” will, in this case, be ambiguous, as it does not distinguish between these two compounds. In cases like this, the charge of the metal ion is included as a Roman numeral in parentheses immediately following the metal name. These two compounds are then unambiguously named iron(II) chloride and iron(III) chloride, respectively. Other examples are provided in Table 4.5.

Some Ionic Compounds with Variably Charged Metal Ions
Compound Name
FeCl2 iron(II) chloride
FeCl3 iron(III) chloride
Hg2O mercury(I) oxide
HgO mercury(II) oxide
SnF2 tin(II) fluoride
SnF4 tin(IV) fluoride
Table 4.5

Out-of-date nomenclature used the suffixes –ic and –ous to designate metals with higher and lower charges, respectively: Iron(III) chloride, FeCl3, was previously called ferric chloride, and iron(II) chloride, FeCl2, was known as ferrous chloride. Though this naming convention has been largely abandoned by the scientific community, it remains in use by some segments of industry. For example, you may see the words stannous fluoride on a tube of toothpaste. This represents the formula SnF2, which is more properly named tin(II) fluoride. The other fluoride of tin is SnF4, which was previously called stannic fluoride but is now named tin(IV) fluoride.

Ionic Hydrates

Ionic compounds that contain water molecules as integral components of their crystals are called hydrates. The name for an ionic hydrate is derived by adding a term to the name for the anhydrous (meaning “not hydrated”) compound that indicates the number of water molecules associated with each formula unit of the compound. The added word begins with a Greek prefix denoting the number of water molecules (see Table 4.6) and ends with “hydrate.” For example, the anhydrous compound copper(II) sulfate also exists as a hydrate containing five water molecules and named copper(II) sulfate pentahydrate. Washing soda is the common name for a hydrate of sodium carbonate containing 10 water molecules; the systematic name is sodium carbonate decahydrate.

Formulas for ionic hydrates are written by appending a vertically centered dot, a coefficient representing the number of water molecules, and the formula for water. The two examples mentioned in the previous paragraph are represented by the formulas

copper(II) sulfate pentahydrateCuSO45H2Osodium carbonate decahydrateNa2CO310H2Ocopper(II) sulfate pentahydrateCuSO45H2Osodium carbonate decahydrateNa2CO310H2O
Nomenclature Prefixes
Number Prefix Number Prefix
1 (sometimes omitted) mono- 6 hexa-
2 di- 7 hepta-
3 tri- 8 octa-
4 tetra- 9 nona-
5 penta- 10 deca-
Table 4.6

Example 4.4

Naming Ionic Compounds

Name the following ionic compounds:

(a) Fe2S3

(b) CuSe

(c) GaN

(d) MgSO4∙7H2O

(e) Ti2(SO4)3

Solution

The anions in these compounds have a fixed negative charge (S2−, Se2− , N3−, and SO42−),SO42−), and the compounds must be neutral. Because the total number of positive charges in each compound must equal the total number of negative charges, the positive ions must be Fe3+, Cu2+, Ga3+, Mg2+, and Ti3+. These charges are used in the names of the metal ions:

(a) iron(III) sulfide

(b) copper(II) selenide

(c) gallium(III) nitride

(d) magnesium sulfate heptahydrate

(e) titanium(III) sulfate

Check Your Learning

Write the formulas of the following ionic compounds:

(a) chromium(III) phosphide

(b) mercury(II) sulfide

(c) manganese(II) phosphate

(d) copper(I) oxide

(e) iron(III) chloride dihydrate

Answer:

(a) CrP; (b) HgS; (c) Mn3(PO4)2; (d) Cu2O; (e) FeCl3∙2H2O

Chemistry in Everyday Life

Erin Brokovich and Chromium Contamination

In the early 1990s, legal file clerk Erin Brockovich (Figure 4.9) discovered a high rate of serious illnesses in the small town of Hinckley, California. Her investigation eventually linked the illnesses to groundwater contaminated by Cr(VI) used by Pacific Gas & Electric (PG&E) to fight corrosion in a nearby natural gas pipeline. As dramatized in the film Erin Brokovich (for which Julia Roberts won an Oscar), Erin and lawyer Edward Masry sued PG&E for contaminating the water near Hinckley in 1993. The settlement they won in 1996—$333 million—was the largest amount ever awarded for a direct-action lawsuit in the US at that time.

Figure A shows a photo of Erin Brockovich. Figure B shows a 3-D ball-and-stick model of chromate. Chromate has a chromium atom at its center that forms bonds with four oxygen atoms each. Two of the oxygen atoms form single bonds with the chromium atom while the other two form double bonds each. The structure of dichromate consists of two chromate ions that are bonded and share one of their oxygen atoms to which each chromate atom has a single bond.
Figure 4.9 (a) Erin Brockovich found that Cr(VI), used by PG&E, had contaminated the Hinckley, California, water supply. (b) The Cr(VI) ion is often present in water as the polyatomic ions chromate, CrO42−CrO42− (left), and dichromate, Cr2O72−Cr2O72− (right).

Chromium compounds are widely used in industry, such as for chrome plating, in dye-making, as preservatives, and to prevent corrosion in cooling tower water, as occurred near Hinckley. In the environment, chromium exists primarily in either the Cr(III) or Cr(VI) forms. Cr(III), an ingredient of many vitamin and nutritional supplements, forms compounds that are not very soluble in water, and it has low toxicity. But Cr(VI) is much more toxic and forms compounds that are reasonably soluble in water. Exposure to small amounts of Cr(VI) can lead to damage of the respiratory, gastrointestinal, and immune systems, as well as the kidneys, liver, blood, and skin.

Despite cleanup efforts, Cr(VI) groundwater contamination remains a problem in Hinckley and other locations across the globe. A 2010 study by the Environmental Working Group found that of 35 US cities tested, 31 had higher levels of Cr(VI) in their tap water than the public health goal of 0.02 parts per billion set by the California Environmental Protection Agency.

Molecular (Covalent) Compounds

The bonding characteristics of inorganic molecular compounds are different from ionic compounds, and they are named using a different system as well. The charges of cations and anions dictate their ratios in ionic compounds, so specifying the names of the ions provides sufficient information to determine chemical formulas. However, because covalent bonding allows for significant variation in the combination ratios of the atoms in a molecule, the names for molecular compounds must explicitly identify these ratios.

Compounds Composed of Two Elements

When two nonmetallic elements form a molecular compound, several combination ratios are often possible. For example, carbon and oxygen can form the compounds CO and CO2. Since these are different substances with different properties, they cannot both have the same name (they cannot both be called carbon oxide). To deal with this situation, we use a naming method that is somewhat similar to that used for ionic compounds, but with added prefixes to specify the numbers of atoms of each element. The name of the more metallic element (the one farther to the left and/or bottom of the periodic table) is first, followed by the name of the more nonmetallic element (the one farther to the right and/or top) with its ending changed to the suffix –ide. The numbers of atoms of each element are designated by the Greek prefixes shown in Table 4.6.

When only one atom of the first element is present, the prefix mono- is usually deleted from that part. Thus, CO is named carbon monoxide, and CO2 is called carbon dioxide. When two vowels are adjacent, the ending vowel in the Greek prefix is sometimes omitted in common practice, though IUPAC guidelines only permit this for the duplicate letters o in monooxide, which is correctly written as monoxide. Some other examples are shown in Table 4.7.

Names of Some Molecular Compounds Composed of Two Elements
Compound Name Compound Name
SO2 sulfur dioxide BCl3 boron trichloride
SO3 sulfur trioxide SF6 sulfur hexafluoride
NO2 nitrogen dioxide PF5 phosphorus pentafluoride
N2O4 dinitrogen tetroxide P4O10 tetraphosphorus decaoxide
N2O5 dinitrogen pentoxide IF7 iodine heptafluoride
Table 4.7

There are a few common names that you will encounter as you continue your study of chemistry. For example, although NO is often called nitric oxide, its proper name is nitrogen monoxide. Similarly, N2O is known as nitrous oxide even though our rules would specify the name dinitrogen monoxide. (And H2O is usually called water, not dihydrogen monoxide.) You should commit to memory the common names of compounds as you encounter them.

Example 4.5

Naming Covalent Compounds

Name the following covalent compounds:

(a) SF6

(b) N2O3

(c) Cl2O7

(d) P4O6

Solution

Because these compounds consist solely of nonmetals, we use prefixes to designate the number of atoms of each element:

(a) sulfur hexafluoride

(b) dinitrogen trioxide

(c) dichlorine heptoxide

(d) tetraphosphorus hexoxide

Check Your Learning

Write the formulas for the following compounds:

(a) phosphorus pentachloride

(b) dinitrogen monoxide

(c) iodine heptafluoride

(d) carbon tetrachloride

Answer:

(a) PCl5; (b) N2O; (c) IF7; (d) CCl4

Binary Acids

Some compounds containing hydrogen are members of an important class of substances known as acids. The chemistry of these compounds is explored in more detail in later chapters of this text, but for now, it will suffice to note that many acids release hydrogen ions, H+, when dissolved in water. To denote this distinct chemical property, a mixture of water with an acid is given a name derived from the compound’s name. If the compound is a binary acid (comprised of hydrogen and one other nonmetallic element):

  1. The word “hydrogen” is changed to the prefix hydro-
  2. The other nonmetallic element name is modified by adding the suffix -ic
  3. The word “acid” is added as a second word

For example, when the gas HCl (hydrogen chloride) is dissolved in water, the solution is called hydrochloric acid. Several other examples of this nomenclature are shown in Table 4.8.

Names of Some Simple Acids
Name of Gas Name of Acid
HF(g), hydrogen fluoride HF(aq), hydrofluoric acid
HCl(g), hydrogen chloride HCl(aq), hydrochloric acid
HBr(g), hydrogen bromide HBr(aq), hydrobromic acid
HI(g), hydrogen iodide HI(aq), hydroiodic acid
H2S(g), hydrogen sulfide H2S(aq), hydrosulfuric acid
Table 4.8

Oxyacids

Many compounds containing three or more elements (such as organic compounds or coordination compounds) are subject to specialized nomenclature rules that you will learn later. However, we will briefly discuss the important compounds known as oxyacids, compounds that contain hydrogen, oxygen, and at least one other element, and are bonded in such a way as to impart acidic properties to the compound (you will learn the details of this in a later chapter). Typical oxyacids consist of hydrogen combined with a polyatomic, oxygen-containing ion. To name oxyacids:

  1. Omit “hydrogen”
  2. Start with the root name of the anion
  3. Replace –ate with –ic, or –ite with –ous
  4. Add “acid”

For example, consider H2CO3 (which you might be tempted to call “hydrogen carbonate”). To name this correctly, “hydrogen” is omitted; the –ate of carbonate is replace with –ic; and acid is added—so its name is carbonic acid. Other examples are given in Table 4.9. There are some exceptions to the general naming method (e.g., H2SO4 is called sulfuric acid, not sulfic acid, and H2SO3 is sulfurous, not sulfous, acid).

Names of Common Oxyacids
Formula Anion Name Acid Name
HC2H3O2 acetate acetic acid
HNO3 nitrate nitric acid
HNO2 nitrite nitrous acid
HClO4 perchlorate perchloric acid
H2CO3 carbonate carbonic acid
H2SO4 sulfate sulfuric acid
H2SO3 sulfite sulfurous acid
H3PO4 phosphate phosphoric acid
Table 4.9
Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/chemistry-atoms-first-2e/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/chemistry-atoms-first-2e/pages/1-introduction
Citation information

© Jan 8, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.