Skip to ContentGo to accessibility page
OpenStax Logo
Chemistry: Atoms First 2e

16.7 Electrolysis

Chemistry: Atoms First 2e16.7 Electrolysis
  1. Preface
  2. 1 Essential Ideas
    1. Introduction
    2. 1.1 Chemistry in Context
    3. 1.2 Phases and Classification of Matter
    4. 1.3 Physical and Chemical Properties
    5. 1.4 Measurements
    6. 1.5 Measurement Uncertainty, Accuracy, and Precision
    7. 1.6 Mathematical Treatment of Measurement Results
    8. Key Terms
    9. Key Equations
    10. Summary
    11. Exercises
  3. 2 Atoms, Molecules, and Ions
    1. Introduction
    2. 2.1 Early Ideas in Atomic Theory
    3. 2.2 Evolution of Atomic Theory
    4. 2.3 Atomic Structure and Symbolism
    5. 2.4 Chemical Formulas
    6. Key Terms
    7. Key Equations
    8. Summary
    9. Exercises
  4. 3 Electronic Structure and Periodic Properties of Elements
    1. Introduction
    2. 3.1 Electromagnetic Energy
    3. 3.2 The Bohr Model
    4. 3.3 Development of Quantum Theory
    5. 3.4 Electronic Structure of Atoms (Electron Configurations)
    6. 3.5 Periodic Variations in Element Properties
    7. 3.6 The Periodic Table
    8. 3.7 Molecular and Ionic Compounds
    9. Key Terms
    10. Key Equations
    11. Summary
    12. Exercises
  5. 4 Chemical Bonding and Molecular Geometry
    1. Introduction
    2. 4.1 Ionic Bonding
    3. 4.2 Covalent Bonding
    4. 4.3 Chemical Nomenclature
    5. 4.4 Lewis Symbols and Structures
    6. 4.5 Formal Charges and Resonance
    7. 4.6 Molecular Structure and Polarity
    8. Key Terms
    9. Key Equations
    10. Summary
    11. Exercises
  6. 5 Advanced Theories of Bonding
    1. Introduction
    2. 5.1 Valence Bond Theory
    3. 5.2 Hybrid Atomic Orbitals
    4. 5.3 Multiple Bonds
    5. 5.4 Molecular Orbital Theory
    6. Key Terms
    7. Key Equations
    8. Summary
    9. Exercises
  7. 6 Composition of Substances and Solutions
    1. Introduction
    2. 6.1 Formula Mass
    3. 6.2 Determining Empirical and Molecular Formulas
    4. 6.3 Molarity
    5. 6.4 Other Units for Solution Concentrations
    6. Key Terms
    7. Key Equations
    8. Summary
    9. Exercises
  8. 7 Stoichiometry of Chemical Reactions
    1. Introduction
    2. 7.1 Writing and Balancing Chemical Equations
    3. 7.2 Classifying Chemical Reactions
    4. 7.3 Reaction Stoichiometry
    5. 7.4 Reaction Yields
    6. 7.5 Quantitative Chemical Analysis
    7. Key Terms
    8. Key Equations
    9. Summary
    10. Exercises
  9. 8 Gases
    1. Introduction
    2. 8.1 Gas Pressure
    3. 8.2 Relating Pressure, Volume, Amount, and Temperature: The Ideal Gas Law
    4. 8.3 Stoichiometry of Gaseous Substances, Mixtures, and Reactions
    5. 8.4 Effusion and Diffusion of Gases
    6. 8.5 The Kinetic-Molecular Theory
    7. 8.6 Non-Ideal Gas Behavior
    8. Key Terms
    9. Key Equations
    10. Summary
    11. Exercises
  10. 9 Thermochemistry
    1. Introduction
    2. 9.1 Energy Basics
    3. 9.2 Calorimetry
    4. 9.3 Enthalpy
    5. 9.4 Strengths of Ionic and Covalent Bonds
    6. Key Terms
    7. Key Equations
    8. Summary
    9. Exercises
  11. 10 Liquids and Solids
    1. Introduction
    2. 10.1 Intermolecular Forces
    3. 10.2 Properties of Liquids
    4. 10.3 Phase Transitions
    5. 10.4 Phase Diagrams
    6. 10.5 The Solid State of Matter
    7. 10.6 Lattice Structures in Crystalline Solids
    8. Key Terms
    9. Key Equations
    10. Summary
    11. Exercises
  12. 11 Solutions and Colloids
    1. Introduction
    2. 11.1 The Dissolution Process
    3. 11.2 Electrolytes
    4. 11.3 Solubility
    5. 11.4 Colligative Properties
    6. 11.5 Colloids
    7. Key Terms
    8. Key Equations
    9. Summary
    10. Exercises
  13. 12 Thermodynamics
    1. Introduction
    2. 12.1 Spontaneity
    3. 12.2 Entropy
    4. 12.3 The Second and Third Laws of Thermodynamics
    5. 12.4 Free Energy
    6. Key Terms
    7. Key Equations
    8. Summary
    9. Exercises
  14. 13 Fundamental Equilibrium Concepts
    1. Introduction
    2. 13.1 Chemical Equilibria
    3. 13.2 Equilibrium Constants
    4. 13.3 Shifting Equilibria: Le Châtelier’s Principle
    5. 13.4 Equilibrium Calculations
    6. Key Terms
    7. Key Equations
    8. Summary
    9. Exercises
  15. 14 Acid-Base Equilibria
    1. Introduction
    2. 14.1 Brønsted-Lowry Acids and Bases
    3. 14.2 pH and pOH
    4. 14.3 Relative Strengths of Acids and Bases
    5. 14.4 Hydrolysis of Salts
    6. 14.5 Polyprotic Acids
    7. 14.6 Buffers
    8. 14.7 Acid-Base Titrations
    9. Key Terms
    10. Key Equations
    11. Summary
    12. Exercises
  16. 15 Equilibria of Other Reaction Classes
    1. Introduction
    2. 15.1 Precipitation and Dissolution
    3. 15.2 Lewis Acids and Bases
    4. 15.3 Coupled Equilibria
    5. Key Terms
    6. Key Equations
    7. Summary
    8. Exercises
  17. 16 Electrochemistry
    1. Introduction
    2. 16.1 Review of Redox Chemistry
    3. 16.2 Galvanic Cells
    4. 16.3 Electrode and Cell Potentials
    5. 16.4 Potential, Free Energy, and Equilibrium
    6. 16.5 Batteries and Fuel Cells
    7. 16.6 Corrosion
    8. 16.7 Electrolysis
    9. Key Terms
    10. Key Equations
    11. Summary
    12. Exercises
  18. 17 Kinetics
    1. Introduction
    2. 17.1 Chemical Reaction Rates
    3. 17.2 Factors Affecting Reaction Rates
    4. 17.3 Rate Laws
    5. 17.4 Integrated Rate Laws
    6. 17.5 Collision Theory
    7. 17.6 Reaction Mechanisms
    8. 17.7 Catalysis
    9. Key Terms
    10. Key Equations
    11. Summary
    12. Exercises
  19. 18 Representative Metals, Metalloids, and Nonmetals
    1. Introduction
    2. 18.1 Periodicity
    3. 18.2 Occurrence and Preparation of the Representative Metals
    4. 18.3 Structure and General Properties of the Metalloids
    5. 18.4 Structure and General Properties of the Nonmetals
    6. 18.5 Occurrence, Preparation, and Compounds of Hydrogen
    7. 18.6 Occurrence, Preparation, and Properties of Carbonates
    8. 18.7 Occurrence, Preparation, and Properties of Nitrogen
    9. 18.8 Occurrence, Preparation, and Properties of Phosphorus
    10. 18.9 Occurrence, Preparation, and Compounds of Oxygen
    11. 18.10 Occurrence, Preparation, and Properties of Sulfur
    12. 18.11 Occurrence, Preparation, and Properties of Halogens
    13. 18.12 Occurrence, Preparation, and Properties of the Noble Gases
    14. Key Terms
    15. Summary
    16. Exercises
  20. 19 Transition Metals and Coordination Chemistry
    1. Introduction
    2. 19.1 Occurrence, Preparation, and Properties of Transition Metals and Their Compounds
    3. 19.2 Coordination Chemistry of Transition Metals
    4. 19.3 Spectroscopic and Magnetic Properties of Coordination Compounds
    5. Key Terms
    6. Summary
    7. Exercises
  21. 20 Nuclear Chemistry
    1. Introduction
    2. 20.1 Nuclear Structure and Stability
    3. 20.2 Nuclear Equations
    4. 20.3 Radioactive Decay
    5. 20.4 Transmutation and Nuclear Energy
    6. 20.5 Uses of Radioisotopes
    7. 20.6 Biological Effects of Radiation
    8. Key Terms
    9. Key Equations
    10. Summary
    11. Exercises
  22. 21 Organic Chemistry
    1. Introduction
    2. 21.1 Hydrocarbons
    3. 21.2 Alcohols and Ethers
    4. 21.3 Aldehydes, Ketones, Carboxylic Acids, and Esters
    5. 21.4 Amines and Amides
    6. Key Terms
    7. Summary
    8. Exercises
  23. A | The Periodic Table
  24. B | Essential Mathematics
  25. C | Units and Conversion Factors
  26. D | Fundamental Physical Constants
  27. E | Water Properties
  28. F | Composition of Commercial Acids and Bases
  29. G | Standard Thermodynamic Properties for Selected Substances
  30. H | Ionization Constants of Weak Acids
  31. I | Ionization Constants of Weak Bases
  32. J | Solubility Products
  33. K | Formation Constants for Complex Ions
  34. L | Standard Electrode (Half-Cell) Potentials
  35. M | Half-Lives for Several Radioactive Isotopes
  36. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
    11. Chapter 11
    12. Chapter 12
    13. Chapter 13
    14. Chapter 14
    15. Chapter 15
    16. Chapter 16
    17. Chapter 17
    18. Chapter 18
    19. Chapter 19
    20. Chapter 20
    21. Chapter 21
  37. Index

Learning Objectives

By the end of this section, you will be able to:

  • Describe the process of electrolysis
  • Compare the operation of electrolytic cells with that of galvanic cells
  • Perform stoichiometric calculations for electrolytic processes

Electrochemical cells in which spontaneous redox reactions take place (galvanic cells) have been the topic of discussion so far in this chapter. In these cells, electrical work is done by a redox system on its surroundings as electrons produced by the redox reaction are transferred through an external circuit. This final section of the chapter will address an alternative scenario in which an external circuit does work on a redox system by imposing a voltage sufficient to drive an otherwise nonspontaneous reaction, a process known as electrolysis. A familiar example of electrolysis is recharging a battery, which involves use of an external power source to drive the spontaneous (discharge) cell reaction in the reverse direction, restoring to some extent the composition of the half-cells and the voltage of the battery. Perhaps less familiar is the use of electrolysis in the refinement of metallic ores, the manufacture of commodity chemicals, and the electroplating of metallic coatings on various products (e.g., jewelry, utensils, auto parts). To illustrate the essential concepts of electrolysis, a few specific processes will be considered.

The Electrolysis of Molten Sodium Chloride

Metallic sodium, Na, and chlorine gas, Cl2, are used in numerous applications, and their industrial production relies on the large-scale electrolysis of molten sodium chloride, NaCl(l). The industrial process typically uses a Downs cell similar to the simplified illustration shown in Figure 16.18. The reactions associated with this process are:


The cell potential for the above process is negative, indicating the reaction as written (decomposition of liquid NaCl) is not spontaneous. To force this reaction, a positive potential of magnitude greater than the negative cell potential must be applied to the cell.

This diagram shows a tank containing a light blue liquid, labeled “Molten N a C l.” A vertical dark grey divider with small, evenly distributed dark dots, labeled “Porous screen” is located at the center of the tank dividing it into two halves. Dark grey bars are positioned at the center of each of the halves of the tank. The bar on the left, which is labeled “Anode” has green bubbles originating from it. The bar on the right which is labeled “Cathode” has light grey bubbles originating from it. An arrow points left from the center of the tank toward the anode, which is labeled “C l superscript negative.” An arrow points right from the center of the tank toward the cathode, which is labeled “N a superscript plus.” A line extends from the tops of the anode and cathode to a rectangle centrally placed above the tank which is labeled “Voltage source.” An arrow extends upward above the anode to the left of the line which is labeled “e superscript negative.” A plus symbol is located to the left of the voltage source and a negative sign it located to its right. An arrow points downward along the line segment leading to the cathode. This arrow is labeled “e superscript negative.” The left side of below the diagram is the label “2 C l superscript negative right pointing arrow C l subscript 2 ( g ) plus 2 e superscript negative.” At the right, below the diagram is the label “2 N a superscript plus plus 2 e superscript negative right pointing arrow 2 N a ( l ).”
Figure 16.18 Cells of this sort (a cell for the electrolysis of molten sodium chloride) are used in the Downs process for production of sodium and chlorine, and they typically use iron cathodes and carbon anodes.

The Electrolysis of Water

Water may be electrolytically decomposed in a cell similar to the one illustrated in Figure 16.19. To improve electrical conductivity without introducing a different redox species, the hydrogen ion concentration of the water is typically increased by addition of a strong acid. The redox processes associated with this cell are

anode:2H2O(l)O2(g)+4H+(aq)+4eEanode°=+1.229 V cathode:2H+(aq)+2eH2(g)Ecathode°=0 V¯ cell:2H2O(l)2H2(g)+O2(g)Ecell°=−1.229 Vanode:2H2O(l)O2(g)+4H+(aq)+4eEanode°=+1.229 V cathode:2H+(aq)+2eH2(g)Ecathode°=0 V¯ cell:2H2O(l)2H2(g)+O2(g)Ecell°=−1.229 V

Again, the cell potential as written is negative, indicating a nonspontaneous cell reaction that must be driven by imposing a cell voltage greater than +1.229 V. Keep in mind that standard electrode potentials are used to inform thermodynamic predictions here, though the cell is not operating under standard state conditions. Therefore, at best, calculated cell potentials should be considered ballpark estimates.

This figure shows an apparatus used for electrolysis. A central chamber with an open top has a vertical column extending below that is nearly full of a clear, colorless liquid, which is labeled “H subscript 2 O plus H subscript 2 S O subscript 4.” A horizontal tube in the apparatus connects the central region to vertical columns to the left and right, each of which has a valve or stopcock at the top and a stoppered bottom. On the left, the stopper at the bottom has a small brown square connected just above it in the liquid. The square is labeled “Anode plus.” A black wire extends from the stopper at the left to a rectangle which is labeled “Voltage source” on to the stopper at the right. The left side of the rectangle is labeled with a plus symbol and the right side is labeled with a negative sign. The stopper on the right also has a brown square connected to it which is in the liquid in the apparatus. This square is labeled “Cathode negative.” The level of the solution on the left arm or tube of the apparatus is significantly higher than the level of the right arm. Bubbles are present near the surface of the liquid on each side of the apparatus, with the bubbles labeled as “O subscript 2 ( g )” on the left and “H subscript 2 ( g )” on the right.
Figure 16.19 The electrolysis of water produces stoichiometric amounts of oxygen gas at the anode and hydrogen at the anode.

The Electrolysis of Aqueous Sodium Chloride

When aqueous solutions of ionic compounds are electrolyzed, the anode and cathode half-reactions may involve the electrolysis of either water species (H2O, H+, OH-) or solute species (the cations and anions of the compound). As an example, the electrolysis of aqueous sodium chloride could involve either of these two anode reactions:

(i)2Cl(aq)Cl2(g)+2eEanode°=+1.35827 V(ii)2H2O(l)O2(g)+4H+(aq)+4eEanode°=+1.229 V(i)2Cl(aq)Cl2(g)+2eEanode°=+1.35827 V(ii)2H2O(l)O2(g)+4H+(aq)+4eEanode°=+1.229 V

The standard electrode (reduction) potentials of these two half-reactions indicate water may be oxidized at a less negative/more positive potential (–1.229 V) than chloride ion (–1.358 V). Thermodynamics thus predicts that water would be more readily oxidized, though in practice it is observed that both water and chloride ion are oxidized under typical conditions, producing a mixture of oxygen and chlorine gas.

Turning attention to the cathode, the possibilities for reduction are:

(iii)2H+(aq)+2eH2(g)Ecathode°=0 V(iv)2H2O(l)+2eH2(g)+2OH(aq)Ecathode°=−0.8277 V(v)Na+(aq)+eNa(s)Ecathode°=−2.71 V(iii)2H+(aq)+2eH2(g)Ecathode°=0 V(iv)2H2O(l)+2eH2(g)+2OH(aq)Ecathode°=−0.8277 V(v)Na+(aq)+eNa(s)Ecathode°=−2.71 V

Comparison of these standard half-reaction potentials suggests the reduction of hydrogen ion is thermodynamically favored. However, in a neutral aqueous sodium chloride solution, the concentration of hydrogen ion is far below the standard state value of 1 M (approximately 10-7 M), and so the observed cathode reaction is actually reduction of water. The net cell reaction in this case is then

cell: 2H2O(l)+2Cl(aq)H2(g)+Cl2(g)+2OH(aq)Ecell°=−2.186 Vcell: 2H2O(l)+2Cl(aq)H2(g)+Cl2(g)+2OH(aq)Ecell°=−2.186 V

This electrolysis reaction is part of the chlor-alkali process used by industry to produce chlorine and sodium hydroxide (lye).

Chemistry in Everyday Life


An important use for electrolytic cells is in electroplating. Electroplating results in a thin coating of one metal on top of a conducting surface. Reasons for electroplating include making the object more corrosion resistant, strengthening the surface, producing a more attractive finish, or for purifying metal. The metals commonly used in electroplating include cadmium, chromium, copper, gold, nickel, silver, and tin. Common consumer products include silver-plated or gold-plated tableware, chrome-plated automobile parts, and jewelry. The silver plating of eating utensils is used here to illustrate the process. (Figure 16.20).

This figure contains a diagram of an electrochemical cell. One beakers is shown that is just over half full. The beaker contains a clear, colorless solution that is labeled “A g N O subscript 3 ( a q ).” A silver strip is mostly submerged in the liquid on the left. This strip is labeled “Silver (anode).” The top of the strip is labeled with a red plus symbol. An arrow points right from the surface of the metal strip into the solution to the label “A g superscript plus” to the right. A spoon is similarly suspended in the solution and is labeled “Spoon (cathode).” It is labeled with a black negative sign on the tip of the spoon’s handle above the surface of the liquid. An arrow extends from the label “A g superscript plus” to the spoon on the right. A wire extends from the top of the spoon and the strip to a rectangle labeled “Voltage source.” An arrow points upward from silver strip which is labeled “e superscript negative.” Similarly, an arrow points down at the right to the surface of the spoon which is also labeled “e superscript negative.” A plus sign is shown just outside the voltage source to the left and a negative is shown to its right.
Figure 16.20 This schematic shows an electrolytic cell for silver plating eating utensils.

In the figure, the anode consists of a silver electrode, shown on the left. The cathode is located on the right and is the spoon, which is made from inexpensive metal. Both electrodes are immersed in a solution of silver nitrate. Applying a sufficient potential results in the oxidation of the silver anode

anode: Ag(s)Ag+(aq)+eanode: Ag(s)Ag+(aq)+e

and reduction of silver ion at the (spoon) cathode:

cathode: Ag+(aq)+eAg(s)cathode: Ag+(aq)+eAg(s)

The net result is the transfer of silver metal from the anode to the cathode. Several experimental factors must be carefully controlled to obtain high-quality silver coatings, including the exact composition of the electrolyte solution, the cell voltage applied, and the rate of the electrolysis reaction (electrical current).

Quantitative Aspects of Electrolysis

Electrical current is defined as the rate of flow for any charged species. Most relevant to this discussion is the flow of electrons. Current is measured in a composite unit called an ampere, defined as one coulomb per second (A = 1 C/s). The charge transferred, Q, by passage of a constant current, I, over a specified time interval, t, is then given by the simple mathematical product


When electrons are transferred during a redox process, the stoichiometry of the reaction may be used to derive the total amount of (electronic) charge involved. For example, the generic reduction process


involves the transfer of n mole of electrons. The charge transferred is, therefore,


where F is Faraday’s constant, the charge in coulombs for one mole of electrons. If the reaction takes place in an electrochemical cell, the current flow is conveniently measured, and it may be used to assist in stoichiometric calculations related to the cell reaction.

Example 16.9

Converting Current to Moles of Electrons

In one process used for electroplating silver, a current of 10.23 A was passed through an electrolytic cell for exactly 1 hour. How many moles of electrons passed through the cell? What mass of silver was deposited at the cathode from the silver nitrate solution?


Faraday’s constant can be used to convert the charge (Q) into moles of electrons (n). The charge is the current (I) multiplied by the time
n=QF=10.23 Cs×1 hr×60 minhr×60 smin96,485 C/mol e=36,830 C96,485 C/mole=0.3817 mol en=QF=10.23 Cs×1 hr×60 minhr×60 smin96,485 C/mol e=36,830 C96,485 C/mole=0.3817 mol e

From the problem, the solution contains AgNO3, so the reaction at the cathode involves 1 mole of electrons for each mole of silver

cathode: Ag+(aq)+eAg(s)cathode: Ag+(aq)+eAg(s)

The atomic mass of silver is 107.9 g/mol, so

mass Ag=0.3817 mol e×1 mol Ag1 mol e×107.9 g Ag1 mol Ag=41.19 g Agmass Ag=0.3817 mol e×1 mol Ag1 mol e×107.9 g Ag1 mol Ag=41.19 g Ag

Check Your Learning

Aluminum metal can be made from aluminum(III) ions by electrolysis. What is the half-reaction at the cathode? What mass of aluminum metal would be recovered if a current of 25.0 A passed through the solution for 15.0 minutes?


Al3+(aq)+3eAl(s);Al3+(aq)+3eAl(s); 0.0777 mol Al = 2.10 g Al.

Example 16.10

Time Required for Deposition

In one application, a 0.010-mm layer of chromium must be deposited on a part with a total surface area of 3.3 m2 from a solution of containing chromium(III) ions. How long would it take to deposit the layer of chromium if the current was 33.46 A? The density of chromium (metal) is 7.19 g/cm3.


First, compute the volume of chromium that must be produced (equal to the product of surface area and thickness):
volume=(0.010 mm×1 cm10 mm)×(3.3m2×(10,000cm21m2))=33 cm3volume=(0.010 mm×1 cm10 mm)×(3.3m2×(10,000cm21m2))=33 cm3

Use the computed volume and the provided density to calculate the molar amount of chromium required:

mass=volume×density=33cm3×7.19 gcm3=237 g Crmass=volume×density=33cm3×7.19 gcm3=237 g Cr
mol Cr=237 g Cr×1 mol Cr52.00 g Cr=4.56 mol Crmol Cr=237 g Cr×1 mol Cr52.00 g Cr=4.56 mol Cr

The stoichiometry of the chromium(III) reduction process requires three moles of electrons for each mole of chromium(0) produced, and so the total charge required is:

Q=4.56 mol Cr×3mol e1 mol Cr×96485 Cmol e=1.32×106CQ=4.56 mol Cr×3mol e1 mol Cr×96485 Cmol e=1.32×106C

Finally, if this charge is passed at a rate of 33.46 C/s, the required time is:

t=QI=1.32×106C33.46 C/s=3.95×104s=11.0 hrt=QI=1.32×106C33.46 C/s=3.95×104s=11.0 hr

Check Your Learning

What mass of zinc is required to galvanize the top of a 3.00 m ×× 5.50 m sheet of iron to a thickness of 0.100 mm of zinc? If the zinc comes from a solution of Zn(NO3)2 and the current is 25.5 A, how long will it take to galvanize the top of the iron? The density of zinc is 7.140 g/cm3.


11.8 kg Zn requires 382 hours.

Order a print copy

As an Amazon Associate we earn from qualifying purchases.


Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at
Citation information

© Jan 22, 2021 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.