Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Chemistry 2e

9.3 Stoichiometry of Gaseous Substances, Mixtures, and Reactions

Chemistry 2e9.3 Stoichiometry of Gaseous Substances, Mixtures, and Reactions

Learning Objectives

By the end of this section, you will be able to:

  • Use the ideal gas law to compute gas densities and molar masses
  • Perform stoichiometric calculations involving gaseous substances
  • State Dalton’s law of partial pressures and use it in calculations involving gaseous mixtures

The study of the chemical behavior of gases was part of the basis of perhaps the most fundamental chemical revolution in history. French nobleman Antoine Lavoisier, widely regarded as the “father of modern chemistry,” changed chemistry from a qualitative to a quantitative science through his work with gases. He discovered the law of conservation of matter, discovered the role of oxygen in combustion reactions, determined the composition of air, explained respiration in terms of chemical reactions, and more. He was a casualty of the French Revolution, guillotined in 1794. Of his death, mathematician and astronomer Joseph-Louis Lagrange said, “It took the mob only a moment to remove his head; a century will not suffice to reproduce it.”2 Much of the knowledge we do have about Lavoisier's contributions is due to his wife, Marie-Anne Paulze Lavoisier, who worked with him in his lab. A trained artist fluent in several languages, she created detailed illustrations of the equipment in his lab, and translated texts from foreign scientists to complement his knowledge. After his execution, she was instrumental in publishing Lavoisier's major treatise, which unified many concepts of chemistry and laid the groundwork for significant further study.

As described in an earlier chapter of this text, we can turn to chemical stoichiometry for answers to many of the questions that ask “How much?” The essential property involved in such use of stoichiometry is the amount of substance, typically measured in moles (n). For gases, molar amount can be derived from convenient experimental measurements of pressure, temperature, and volume. Therefore, these measurements are useful in assessing the stoichiometry of pure gases, gas mixtures, and chemical reactions involving gases. This section will not introduce any new material or ideas, but will provide examples of applications and ways to integrate concepts already discussed.

Gas Density and Molar Mass

The ideal gas law described previously in this chapter relates the properties of pressure P, volume V, temperature T, and molar amount n. This law is universal, relating these properties in identical fashion regardless of the chemical identity of the gas:


The density d of a gas, on the other hand, is determined by its identity. As described in another chapter of this text, the density of a substance is a characteristic property that may be used to identify the substance.


Rearranging the ideal gas equation to isolate V and substituting into the density equation yields


The ratio m/n is the definition of molar mass, :


The density equation can then be written


This relation may be used for calculating the densities of gases of known identities at specified values of pressure and temperature as demonstrated in Example 9.11.

Example 9.11

Measuring Gas Density

What is the density of molecular nitrogen gas at STP?


The molar mass of molecular nitrogen, N2, is 28.01 g/mol. Substituting this value along with standard temperature and pressure into the gas density equation yields


Check Your Learning

What is the density of molecular hydrogen gas at 17.0 °C and a pressure of 760 torr?


d = 0.0847 g/L

When the identity of a gas is unknown, measurements of the mass, pressure, volume, and temperature of a sample can be used to calculate the molar mass of the gas (a useful property for identification purposes). Combining the ideal gas equation


and the definition of molar mass


yields the following equation:


Determining the molar mass of a gas via this approach is demonstrated in Example 9.12.

Example 9.12

Determining the Molecular Formula of a Gas from its Molar Mass and Empirical Formula

Cyclopropane, a gas once used with oxygen as a general anesthetic, is composed of 85.7% carbon and 14.3% hydrogen by mass. Find the empirical formula. If 1.56 g of cyclopropane occupies a volume of 1.00 L at 0.984 atm and 50 °C, what is the molecular formula for cyclopropane?


First determine the empirical formula of the gas. Assume 100 g and convert the percentage of each element into grams. Determine the number of moles of carbon and hydrogen in the 100-g sample of cyclopropane. Divide by the smallest number of moles to relate the number of moles of carbon to the number of moles of hydrogen. In the last step, realize that the smallest whole number ratio is the empirical formula:
85.7 g C×1 mol C12.01 g C=7.136 mol C7.1367.136=1.00 mol C85.7 g C×1 mol C12.01 g C=7.136 mol C7.1367.136=1.00 mol C
14.3 g H×1 mol H1.01 g H=14.158 mol H14.1587.136=1.98 mol H14.3 g H×1 mol H1.01 g H=14.158 mol H14.1587.136=1.98 mol H

Empirical formula is CH2 [empirical mass (EM) of 14.03 g/empirical unit].

Next, use the provided values for mass, pressure, temperature and volume to compute the molar mass of the gas:


Comparing the molar mass to the empirical formula mass shows how many empirical formula units make up a molecule:


The molecular formula is thus derived from the empirical formula by multiplying each of its subscripts by three:


Check Your Learning

Acetylene, a fuel used in welding torches, is composed of 92.3% C and 7.7% H by mass. Find the empirical formula. If 1.10 g of acetylene occupies of volume of 1.00 L at 1.15 atm and 59.5 °C, what is the molecular formula for acetylene?


Empirical formula, CH; Molecular formula, C2H2

Example 9.13

Determining the Molar Mass of a Volatile Liquid

The approximate molar mass of a volatile liquid can be determined by:
  1. Heating a sample of the liquid in a flask with a tiny hole at the top, which converts the liquid into gas that may escape through the hole
  2. Removing the flask from heat at the instant when the last bit of liquid becomes gas, at which time the flask will be filled with only gaseous sample at ambient pressure
  3. Sealing the flask and permitting the gaseous sample to condense to liquid, and then weighing the flask to determine the sample’s mass (see Figure 9.19)
This figure shows four photos each connected by a right-facing arrow. The first photo shows a glass flask with aluminum foil covering the top sitting on a scale. The second photo shows a syringe being inserted into the flask through the aluminum foil covering. The third photo shows the glass flask being inserted into a beaker of water. The water appears to be heated at 100. The fourth photo shows the glass flask being weighed again.
Figure 9.19 When the volatile liquid in the flask is heated past its boiling point, it becomes gas and drives air out of the flask. At tlg,tlg, the flask is filled with volatile liquid gas at the same pressure as the atmosphere. If the flask is then cooled to room temperature, the gas condenses and the mass of the gas that filled the flask, and is now liquid, can be measured. (credit: modification of work by Mark Ott)

Using this procedure, a sample of chloroform gas weighing 0.494 g is collected in a flask with a volume of 129 cm3 at 99.6 °C when the atmospheric pressure is 742.1 mm Hg. What is the approximate molar mass of chloroform?


Since =mn=mn and n=PVRT,n=PVRT, substituting and rearranging gives =mRTPV,=mRTPV,


=mRTPV=(0.494 g)×0.08206 L·atm/mol K×372.8 K0.976 atm×0.129 L=120g/mol.=mRTPV=(0.494 g)×0.08206 L·atm/mol K×372.8 K0.976 atm×0.129 L=120g/mol.

Check Your Learning

A sample of phosphorus that weighs 3.243 ×× 10−2 g exerts a pressure of 31.89 kPa in a 56.0-mL bulb at 550 °C. What are the molar mass and molecular formula of phosphorus vapor?


124 g/mol P4

The Pressure of a Mixture of Gases: Dalton’s Law

Unless they chemically react with each other, the individual gases in a mixture of gases do not affect each other’s pressure. Each individual gas in a mixture exerts the same pressure that it would exert if it were present alone in the container (Figure 9.20). The pressure exerted by each individual gas in a mixture is called its partial pressure. This observation is summarized by Dalton’s law of partial pressures: The total pressure of a mixture of ideal gases is equal to the sum of the partial pressures of the component gases:


In the equation PTotal is the total pressure of a mixture of gases, PA is the partial pressure of gas A; PB is the partial pressure of gas B; PC is the partial pressure of gas C; and so on.

This figure includes images of four gas-filled cylinders or tanks. Each has a valve at the top. The interior of the first cylinder is shaded blue. This region contains 5 small blue circles that are evenly distributed. The label “300 k P a” is on the cylinder. The second cylinder is shaded lavender. This region contains 8 small purple circles that are evenly distributed. The label “450 k P a” is on the cylinder. To the right of these cylinders is a third cylinder. Its interior is shaded pale yellow. This region contains 12 small yellow circles that are evenly distributed. The label “6000 k P a” is on this region of the cylinder. An arrow labeled “Total pressure combined” appears to the right of these three cylinders. This arrow points to a fourth cylinder. The interior of this cylinder is shaded a pale green. It contains evenly distributed small circles in the following quantities and colors; 5 blue, 8 purple, and 12 yellow. This cylinder is labeled “1350 k P a.”
Figure 9.20 If equal-volume cylinders containing gasses at pressures of 300 kPa, 450 kPa, and 600 kPa are all combined in the same-size cylinder, the total pressure of the gas mixture is 1350 kPa.

The partial pressure of gas A is related to the total pressure of the gas mixture via its mole fraction (X), a unit of concentration defined as the number of moles of a component of a solution divided by the total number of moles of all components:


where PA, XA, and nA are the partial pressure, mole fraction, and number of moles of gas A, respectively, and nTotal is the number of moles of all components in the mixture.

Example 9.14

The Pressure of a Mixture of Gases

A 10.0-L vessel contains 2.50 ×× 10−3 mol of H2, 1.00 ×× 10−3 mol of He, and 3.00 ×× 10−4 mol of Ne at 35 °C.

(a) What are the partial pressures of each of the gases?

(b) What is the total pressure in atmospheres?


The gases behave independently, so the partial pressure of each gas can be determined from the ideal gas equation, using P=nRTVP=nRTV:

The total pressure is given by the sum of the partial pressures:


Check Your Learning

A 5.73-L flask at 25 °C contains 0.0388 mol of N2, 0.147 mol of CO, and 0.0803 mol of H2. What is the total pressure in the flask in atmospheres?


1.137 atm

Here is another example of this concept, but dealing with mole fraction calculations.

Example 9.15

The Pressure of a Mixture of Gases

A gas mixture used for anesthesia contains 2.83 mol oxygen, O2, and 8.41 mol nitrous oxide, N2O. The total pressure of the mixture is 192 kPa.

(a) What are the mole fractions of O2 and N2O?

(b) What are the partial pressures of O2 and N2O?


The mole fraction is given by XA=nAnTotalXA=nAnTotal and the partial pressure is PA = XA ×× PTotal.

For O2,

XO2=nO2nTotal=2.83 mol(2.83+8.41)mol=0.252XO2=nO2nTotal=2.83 mol(2.83+8.41)mol=0.252

and PO2=XO2×PTotal=0.252×192 kPa=48.4 kPaPO2=XO2×PTotal=0.252×192 kPa=48.4 kPa

For N2O,

XN2O=nN2OnTotal=8.41 mol(2.83+8.41)mol=0.748XN2O=nN2OnTotal=8.41 mol(2.83+8.41)mol=0.748


PN2O=XN2O×PTotal=0.748×192 kPa=144 kPaPN2O=XN2O×PTotal=0.748×192 kPa=144 kPa

Check Your Learning

What is the pressure of a mixture of 0.200 g of H2, 1.00 g of N2, and 0.820 g of Ar in a container with a volume of 2.00 L at 20 °C?


1.87 atm

Collection of Gases over Water

A simple way to collect gases that do not react with water is to capture them in a bottle that has been filled with water and inverted into a dish filled with water. The pressure of the gas inside the bottle can be made equal to the air pressure outside by raising or lowering the bottle. When the water level is the same both inside and outside the bottle (Figure 9.21), the pressure of the gas is equal to the atmospheric pressure, which can be measured with a barometer.

This figure shows a diagram of equipment used for collecting a gas over water. To the left is an Erlenmeyer flask. It is approximately two thirds full of a lavender colored liquid. Bubbles are evident in the liquid. The label “Reaction Producing Gas” appears below the flask. A line segment connects this label to the liquid in the flask. The flask has a stopper in it through which a single glass tube extends from the open region above the liquid in the flask up, through the stopper, to the right, then angles down into a pan that is nearly full of light blue water. This tube again extends right once it is well beneath the water’s surface. It then bends up into an inverted flask which is labeled “Collection Flask.” This collection flask is positioned with its mouth beneath the surface of the light blue water and appears approximately half full. Bubbles are evident in the water in the inverted flask. The open space above the water in the inverted flask is labeled “collected gas.”
Figure 9.21 When a reaction produces a gas that is collected above water, the trapped gas is a mixture of the gas produced by the reaction and water vapor. If the collection flask is appropriately positioned to equalize the water levels both within and outside the flask, the pressure of the trapped gas mixture will equal the atmospheric pressure outside the flask (see the earlier discussion of manometers).

However, there is another factor we must consider when we measure the pressure of the gas by this method. Water evaporates and there is always gaseous water (water vapor) above a sample of liquid water. As a gas is collected over water, it becomes saturated with water vapor and the total pressure of the mixture equals the partial pressure of the gas plus the partial pressure of the water vapor. The pressure of the pure gas is therefore equal to the total pressure minus the pressure of the water vapor—this is referred to as the “dry” gas pressure, that is, the pressure of the gas only, without water vapor. The vapor pressure of water, which is the pressure exerted by water vapor in equilibrium with liquid water in a closed container, depends on the temperature (Figure 9.22); more detailed information on the temperature dependence of water vapor can be found in Table 9.2, and vapor pressure will be discussed in more detail in the next chapter on liquids.

A graph is shown. The horizontal axis is labeled “Temperature ( degrees C )” with markings and labels provided for multiples of 20 beginning at 0 and ending at 100. The vertical axis is labeled “Vapor pressure ( torr )” with marking and labels provided for multiples of 200, beginning at 0 and ending at 800. A smooth solid black curve extends from the origin up and to the right across the graph. The graph shows a positive trend with an increasing rate of change. On the vertical axis is ( 7 60) and an arrow pointing to it. The arrow is labeled, “Vapor pressure at ( 100 degrees C ).”
Figure 9.22 This graph shows the vapor pressure of water at sea level as a function of temperature.
Vapor Pressure of Ice and Water in Various Temperatures at Sea Level
Temperature (°C) Pressure (torr) Temperature (°C) Pressure (torr) Temperature (°C) Pressure (torr)
–10 1.95 18 15.5 30 31.8
–5 3.0 19 16.5 35 42.2
–2 3.9 20 17.5 40 55.3
0 4.6 21 18.7 50 92.5
2 5.3 22 19.8 60 149.4
4 6.1 23 21.1 70 233.7
6 7.0 24 22.4 80 355.1
8 8.0 25 23.8 90 525.8
10 9.2 26 25.2 95 633.9
12 10.5 27 26.7 99 733.2
14 12.0 28 28.3 100.0 760.0
16 13.6 29 30.0 101.0 787.6
Table 9.2

Example 9.16

Pressure of a Gas Collected Over Water

If 0.200 L of argon is collected over water at a temperature of 26 °C and a pressure of 750 torr in a system like that shown in Figure 9.21, what is the partial pressure of argon?


According to Dalton’s law, the total pressure in the bottle (750 torr) is the sum of the partial pressure of argon and the partial pressure of gaseous water:

Rearranging this equation to solve for the pressure of argon gives:


The pressure of water vapor above a sample of liquid water at 26 °C is 25.2 torr (Appendix E), so:


Check Your Learning

A sample of oxygen collected over water at a temperature of 29.0 °C and a pressure of 764 torr has a volume of 0.560 L. What volume would the dry oxygen from this sample have under the same conditions of temperature and pressure?


0.537 L

Chemical Stoichiometry and Gases

Chemical stoichiometry describes the quantitative relationships between reactants and products in chemical reactions.

We have previously measured quantities of reactants and products using masses for solids and volumes in conjunction with the molarity for solutions; now we can also use gas volumes to indicate quantities. If we know the volume, pressure, and temperature of a gas, we can use the ideal gas equation to calculate how many moles of the gas are present. If we know how many moles of a gas are involved, we can calculate the volume of a gas at any temperature and pressure.

Avogadro’s Law Revisited

Sometimes we can take advantage of a simplifying feature of the stoichiometry of gases that solids and solutions do not exhibit: All gases that show ideal behavior contain the same number of molecules in the same volume (at the same temperature and pressure). Thus, the ratios of volumes of gases involved in a chemical reaction are given by the coefficients in the equation for the reaction, provided that the gas volumes are measured at the same temperature and pressure.

We can extend Avogadro’s law (that the volume of a gas is directly proportional to the number of moles of the gas) to chemical reactions with gases: Gases combine, or react, in definite and simple proportions by volume, provided that all gas volumes are measured at the same temperature and pressure. For example, since nitrogen and hydrogen gases react to produce ammonia gas according to N2(g)+3H2(g)2NH3(g),N2(g)+3H2(g)2NH3(g), a given volume of nitrogen gas reacts with three times that volume of hydrogen gas to produce two times that volume of ammonia gas, if pressure and temperature remain constant.

The explanation for this is illustrated in Figure 9.23. According to Avogadro’s law, equal volumes of gaseous N2, H2, and NH3, at the same temperature and pressure, contain the same number of molecules. Because one molecule of N2 reacts with three molecules of H2 to produce two molecules of NH3, the volume of H2 required is three times the volume of N2, and the volume of NH3 produced is two times the volume of N2.

This diagram provided models of the chemical reaction written with formulas across the bottom of the figure. The reaction is written; N subscript 2 plus 3H subscript 2 followed by an arrow pointing right to NH subscript 3. Just above the formulas, space-filling models are provided. Above NH subscript 2, two blue spheres are bonded. Above 3H subscript 2, three pairs of two slightly smaller white spheres are bonded. Above NH subscript 3, two molecules are shown composed each of a central blue sphere to which three slightly smaller white spheres are bonded. Across the top of the diagram, the reaction is illustrated with balloons. To the left is a light blue balloon, which is labeled “N subscript 2”. This balloon contains a single space-filling model composed of two bonded blue spheres. This balloon is followed by a plus sign, then three grey balloons which are each labeled “H subscript 2.” Each of these balloons similarly contain a single space-filling model composed of two bonded white spheres. These white spheres are slightly smaller than the blue spheres. An arrow follows that points right to two light-green balloons, which are each labeled “2 NH subscript 3.” Each light-green balloon contains a space-filling model composed of a single central blue sphere to which three slightly smaller white spheres are bonded.
Figure 9.23 One volume of N2 combines with three volumes of H2 to form two volumes of NH3.

Example 9.17

Reaction of Gases

Propane, C3H8(g), is used in gas grills to provide the heat for cooking. What volume of O2(g) measured at 25 °C and 760 torr is required to react with 2.7 L of propane measured under the same conditions of temperature and pressure? Assume that the propane undergoes complete combustion.


The ratio of the volumes of C3H8 and O2 will be equal to the ratio of their coefficients in the balanced equation for the reaction:
C3H8(g)+5O2(g)3CO2(g)+4H2O(l)1 volume+5 volumes3 volumes+4 volumesC3H8(g)+5O2(g)3CO2(g)+4H2O(l)1 volume+5 volumes3 volumes+4 volumes

From the equation, we see that one volume of C3H8 will react with five volumes of O2:

2.7LC3H8×5 LO21LC3H8=13.5 LO22.7LC3H8×5 LO21LC3H8=13.5 LO2

A volume of 13.5 L of O2 will be required to react with 2.7 L of C3H8.

Check Your Learning

An acetylene tank for an oxyacetylene welding torch provides 9340 L of acetylene gas, C2H2, at 0 °C and 1 atm. How many tanks of oxygen, each providing 7.00 ×× 103 L of O2 at 0 °C and 1 atm, will be required to burn the acetylene?


3.34 tanks (2.34 ×× 104 L)

Example 9.18

Volumes of Reacting Gases

Ammonia is an important fertilizer and industrial chemical. Suppose that a volume of 683 billion cubic feet of gaseous ammonia, measured at 25 °C and 1 atm, was manufactured. What volume of H2(g), measured under the same conditions, was required to prepare this amount of ammonia by reaction with N2?


Because equal volumes of H2 and NH3 contain equal numbers of molecules and each three molecules of H2 that react produce two molecules of NH3, the ratio of the volumes of H2 and NH3 will be equal to 3:2. Two volumes of NH3, in this case in units of billion ft3, will be formed from three volumes of H2:
683billionft3NH3×3 billionft3H22billionft3NH3=1.02×103billionft3H2683billionft3NH3×3 billionft3H22billionft3NH3=1.02×103billionft3H2

The manufacture of 683 billion ft3 of NH3 required 1020 billion ft3 of H2. (At 25 °C and 1 atm, this is the volume of a cube with an edge length of approximately 1.9 miles.)

Check Your Learning

What volume of O2(g) measured at 25 °C and 760 torr is required to react with 17.0 L of ethylene, C2H4(g), measured under the same conditions of temperature and pressure? The products are CO2 and water vapor.


51.0 L

Example 9.19

Volume of Gaseous Product

What volume of hydrogen at 27 °C and 723 torr may be prepared by the reaction of 8.88 g of gallium with an excess of hydrochloric acid?


Convert the provided mass of the limiting reactant, Ga, to moles of hydrogen produced:
8.88g Ga×1mol Ga69.723g Ga×3 molH22mol Ga=0.191mol H28.88g Ga×1mol Ga69.723g Ga×3 molH22mol Ga=0.191mol H2

Convert the provided temperature and pressure values to appropriate units (K and atm, respectively), and then use the molar amount of hydrogen gas and the ideal gas equation to calculate the volume of gas:

V=(nRTP)=0.191mol×0.08206 Latmmol−1K−1×300 K0.951atm=4.94 LV=(nRTP)=0.191mol×0.08206 Latmmol−1K−1×300 K0.951atm=4.94 L

Check Your Learning

Sulfur dioxide is an intermediate in the preparation of sulfuric acid. What volume of SO2 at 343 °C and 1.21 atm is produced by burning 1.00 kg of sulfur in excess oxygen?


1.30 ×× 103 L

How Sciences Interconnect

Greenhouse Gases and Climate Change

The thin skin of our atmosphere keeps the earth from being an ice planet and makes it habitable. In fact, this is due to less than 0.5% of the air molecules. Of the energy from the sun that reaches the earth, almost 1313 is reflected back into space, with the rest absorbed by the atmosphere and the surface of the earth. Some of the energy that the earth absorbs is re-emitted as infrared (IR) radiation, a portion of which passes back out through the atmosphere into space. Most if this IR radiation, however, is absorbed by certain atmospheric gases, effectively trapping heat within the atmosphere in a phenomenon known as the greenhouse effect. This effect maintains global temperatures within the range needed to sustain life on earth. Without our atmosphere, the earth's average temperature would be lower by more than 30 °C (nearly 60 °F). The major greenhouse gases (GHGs) are water vapor, carbon dioxide, methane, and ozone. Since the Industrial Revolution, human activity has been increasing the concentrations of GHGs, which have changed the energy balance and are significantly altering the earth’s climate (Figure 9.24).

This diagram shows half of a two dimensional view of the earth in blue and green at the left of the image. A slight distance outside the hemisphere is a grey arc. A line segment connects the label “Atmosphere” to the region between the hemisphere and the grey arc. In this region, near the surface of the earth the chemical formulas C O subscript 2, C H subscript 3, and N subscript 2 O appear. Five red arrows formed from wavy lines extend from green regions on the earth out into and just beyond the region labeled “Atmosphere.” The label “Infrared radiation” points to one of these red arrows. At a fair distance outside of the grey arc appears a yellow circle with a jagged boundary. This circle is labeled “Sun.” From it extend yellow arrows with wavy lines which extend toward the earth. Three of the arrows extend to the green region on the earth. One of the arrows appears to be reflected off the grey arc, causing its path to turn away from the earth.
Figure 9.24 Greenhouse gases trap enough of the sun’s energy to make the planet habitable—this is known as the greenhouse effect. Human activities are increasing greenhouse gas levels, warming the planet and causing more extreme weather events.

There is strong evidence from multiple sources that higher atmospheric levels of CO2 are caused by human activity, with fossil fuel burning accounting for about 3434 of the recent increase in CO2. Reliable data from ice cores reveals that CO2 concentration in the atmosphere is at the highest level in the past 800,000 years; other evidence indicates that it may be at its highest level in 20 million years. In recent years, the CO2 concentration has increased preindustrial levels of ~280 ppm to more than 400 ppm today (Figure 9.25).

This figure has the heading “Carbon Dioxide in the Atmosphere.” The first graph has a horizontal axis label “Year ( B C )” and a vertical axis label “Carbon dioxide concentration ( p p m ).” The horizontal axis labels begin at 700,000 on the left and increases by multiples of 100,000 up to 0 on the right. The vertical axis begins at 0 and increases by multiples of 50 extending up to 400. A jagged, cyclical pattern is shown that begins before 600,000 B C at under 200 p p m. Up to 0 B C values appear to vary cyclically up to a high of about 300 p p m. Extending beyond 0 B C to the right, the carbon dioxide concentration appears to be on a steady increase, having reached nearly 400 p p m in recent years. The second graph is shown to magnify the portion of the graph that is most recent. This graph begins just before the year 1960 and includes markings for multiples of 10 up to the year 2010. The vertical axis begins just below 320 p p m and includes markings for all multiples of 20 up to 400 p p m. A smooth black line is shown extending through a jagged red data pattern. The trend is a steady, nearly linear increase from the lower left to the upper right on the graph.
Figure 9.25 CO2 levels over the past 700,000 years were typically from 200–300 ppm, with a steep, unprecedented increase over the past 50 years.

Portrait of a Chemist

Susan Solomon

Atmospheric and climate scientist Susan Solomon (Figure 9.26) is the author of one of The New York Times books of the year (The Coldest March, 2001), one of Time magazine’s 100 most influential people in the world (2008), and a working group leader of the Intergovernmental Panel on Climate Change (IPCC), which was the recipient of the 2007 Nobel Peace Prize. She helped determine and explain the cause of the formation of the ozone hole over Antarctica, and has authored many important papers on climate change. She has been awarded the top scientific honors in the US and France (the National Medal of Science and the Grande Medaille, respectively), and is a member of the National Academy of Sciences, the Royal Society, the French Academy of Sciences, and the European Academy of Sciences. Formerly a professor at the University of Colorado, she is now at MIT, and continues to work at NOAA.

For more information, watch this video about Susan Solomon.

A photograph is shown of Susan Solomon sitting next to a globe.
Figure 9.26 Susan Solomon’s research focuses on climate change and has been instrumental in determining the cause of the ozone hole over Antarctica. (credit: National Oceanic and Atmospheric Administration)


  • 2“Quotations by Joseph-Louis Lagrange,” last modified February 2006, accessed February 10, 2015,
Order a print copy

As an Amazon Associate we earn from qualifying purchases.


This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at
Citation information

© Jan 8, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.