Skip to Content
OpenStax Logo
Chemistry 2e

E | Water Properties

Chemistry 2eE | Water Properties
Buy book
  1. Preface
  2. 1 Essential Ideas
    1. Introduction
    2. 1.1 Chemistry in Context
    3. 1.2 Phases and Classification of Matter
    4. 1.3 Physical and Chemical Properties
    5. 1.4 Measurements
    6. 1.5 Measurement Uncertainty, Accuracy, and Precision
    7. 1.6 Mathematical Treatment of Measurement Results
    8. Key Terms
    9. Key Equations
    10. Summary
    11. Exercises
  3. 2 Atoms, Molecules, and Ions
    1. Introduction
    2. 2.1 Early Ideas in Atomic Theory
    3. 2.2 Evolution of Atomic Theory
    4. 2.3 Atomic Structure and Symbolism
    5. 2.4 Chemical Formulas
    6. 2.5 The Periodic Table
    7. 2.6 Molecular and Ionic Compounds
    8. 2.7 Chemical Nomenclature
    9. Key Terms
    10. Key Equations
    11. Summary
    12. Exercises
  4. 3 Composition of Substances and Solutions
    1. Introduction
    2. 3.1 Formula Mass and the Mole Concept
    3. 3.2 Determining Empirical and Molecular Formulas
    4. 3.3 Molarity
    5. 3.4 Other Units for Solution Concentrations
    6. Key Terms
    7. Key Equations
    8. Summary
    9. Exercises
  5. 4 Stoichiometry of Chemical Reactions
    1. Introduction
    2. 4.1 Writing and Balancing Chemical Equations
    3. 4.2 Classifying Chemical Reactions
    4. 4.3 Reaction Stoichiometry
    5. 4.4 Reaction Yields
    6. 4.5 Quantitative Chemical Analysis
    7. Key Terms
    8. Key Equations
    9. Summary
    10. Exercises
  6. 5 Thermochemistry
    1. Introduction
    2. 5.1 Energy Basics
    3. 5.2 Calorimetry
    4. 5.3 Enthalpy
    5. Key Terms
    6. Key Equations
    7. Summary
    8. Exercises
  7. 6 Electronic Structure and Periodic Properties of Elements
    1. Introduction
    2. 6.1 Electromagnetic Energy
    3. 6.2 The Bohr Model
    4. 6.3 Development of Quantum Theory
    5. 6.4 Electronic Structure of Atoms (Electron Configurations)
    6. 6.5 Periodic Variations in Element Properties
    7. Key Terms
    8. Key Equations
    9. Summary
    10. Exercises
  8. 7 Chemical Bonding and Molecular Geometry
    1. Introduction
    2. 7.1 Ionic Bonding
    3. 7.2 Covalent Bonding
    4. 7.3 Lewis Symbols and Structures
    5. 7.4 Formal Charges and Resonance
    6. 7.5 Strengths of Ionic and Covalent Bonds
    7. 7.6 Molecular Structure and Polarity
    8. Key Terms
    9. Key Equations
    10. Summary
    11. Exercises
  9. 8 Advanced Theories of Covalent Bonding
    1. Introduction
    2. 8.1 Valence Bond Theory
    3. 8.2 Hybrid Atomic Orbitals
    4. 8.3 Multiple Bonds
    5. 8.4 Molecular Orbital Theory
    6. Key Terms
    7. Key Equations
    8. Summary
    9. Exercises
  10. 9 Gases
    1. Introduction
    2. 9.1 Gas Pressure
    3. 9.2 Relating Pressure, Volume, Amount, and Temperature: The Ideal Gas Law
    4. 9.3 Stoichiometry of Gaseous Substances, Mixtures, and Reactions
    5. 9.4 Effusion and Diffusion of Gases
    6. 9.5 The Kinetic-Molecular Theory
    7. 9.6 Non-Ideal Gas Behavior
    8. Key Terms
    9. Key Equations
    10. Summary
    11. Exercises
  11. 10 Liquids and Solids
    1. Introduction
    2. 10.1 Intermolecular Forces
    3. 10.2 Properties of Liquids
    4. 10.3 Phase Transitions
    5. 10.4 Phase Diagrams
    6. 10.5 The Solid State of Matter
    7. 10.6 Lattice Structures in Crystalline Solids
    8. Key Terms
    9. Key Equations
    10. Summary
    11. Exercises
  12. 11 Solutions and Colloids
    1. Introduction
    2. 11.1 The Dissolution Process
    3. 11.2 Electrolytes
    4. 11.3 Solubility
    5. 11.4 Colligative Properties
    6. 11.5 Colloids
    7. Key Terms
    8. Key Equations
    9. Summary
    10. Exercises
  13. 12 Kinetics
    1. Introduction
    2. 12.1 Chemical Reaction Rates
    3. 12.2 Factors Affecting Reaction Rates
    4. 12.3 Rate Laws
    5. 12.4 Integrated Rate Laws
    6. 12.5 Collision Theory
    7. 12.6 Reaction Mechanisms
    8. 12.7 Catalysis
    9. Key Terms
    10. Key Equations
    11. Summary
    12. Exercises
  14. 13 Fundamental Equilibrium Concepts
    1. Introduction
    2. 13.1 Chemical Equilibria
    3. 13.2 Equilibrium Constants
    4. 13.3 Shifting Equilibria: Le Châtelier’s Principle
    5. 13.4 Equilibrium Calculations
    6. Key Terms
    7. Key Equations
    8. Summary
    9. Exercises
  15. 14 Acid-Base Equilibria
    1. Introduction
    2. 14.1 Brønsted-Lowry Acids and Bases
    3. 14.2 pH and pOH
    4. 14.3 Relative Strengths of Acids and Bases
    5. 14.4 Hydrolysis of Salts
    6. 14.5 Polyprotic Acids
    7. 14.6 Buffers
    8. 14.7 Acid-Base Titrations
    9. Key Terms
    10. Key Equations
    11. Summary
    12. Exercises
  16. 15 Equilibria of Other Reaction Classes
    1. Introduction
    2. 15.1 Precipitation and Dissolution
    3. 15.2 Lewis Acids and Bases
    4. 15.3 Coupled Equilibria
    5. Key Terms
    6. Key Equations
    7. Summary
    8. Exercises
  17. 16 Thermodynamics
    1. Introduction
    2. 16.1 Spontaneity
    3. 16.2 Entropy
    4. 16.3 The Second and Third Laws of Thermodynamics
    5. 16.4 Free Energy
    6. Key Terms
    7. Key Equations
    8. Summary
    9. Exercises
  18. 17 Electrochemistry
    1. Introduction
    2. 17.1 Review of Redox Chemistry
    3. 17.2 Galvanic Cells
    4. 17.3 Electrode and Cell Potentials
    5. 17.4 Potential, Free Energy, and Equilibrium
    6. 17.5 Batteries and Fuel Cells
    7. 17.6 Corrosion
    8. 17.7 Electrolysis
    9. Key Terms
    10. Key Equations
    11. Summary
    12. Exercises
  19. 18 Representative Metals, Metalloids, and Nonmetals
    1. Introduction
    2. 18.1 Periodicity
    3. 18.2 Occurrence and Preparation of the Representative Metals
    4. 18.3 Structure and General Properties of the Metalloids
    5. 18.4 Structure and General Properties of the Nonmetals
    6. 18.5 Occurrence, Preparation, and Compounds of Hydrogen
    7. 18.6 Occurrence, Preparation, and Properties of Carbonates
    8. 18.7 Occurrence, Preparation, and Properties of Nitrogen
    9. 18.8 Occurrence, Preparation, and Properties of Phosphorus
    10. 18.9 Occurrence, Preparation, and Compounds of Oxygen
    11. 18.10 Occurrence, Preparation, and Properties of Sulfur
    12. 18.11 Occurrence, Preparation, and Properties of Halogens
    13. 18.12 Occurrence, Preparation, and Properties of the Noble Gases
    14. Key Terms
    15. Summary
    16. Exercises
  20. 19 Transition Metals and Coordination Chemistry
    1. Introduction
    2. 19.1 Occurrence, Preparation, and Properties of Transition Metals and Their Compounds
    3. 19.2 Coordination Chemistry of Transition Metals
    4. 19.3 Spectroscopic and Magnetic Properties of Coordination Compounds
    5. Key Terms
    6. Summary
    7. Exercises
  21. 20 Organic Chemistry
    1. Introduction
    2. 20.1 Hydrocarbons
    3. 20.2 Alcohols and Ethers
    4. 20.3 Aldehydes, Ketones, Carboxylic Acids, and Esters
    5. 20.4 Amines and Amides
    6. Key Terms
    7. Summary
    8. Exercises
  22. 21 Nuclear Chemistry
    1. Introduction
    2. 21.1 Nuclear Structure and Stability
    3. 21.2 Nuclear Equations
    4. 21.3 Radioactive Decay
    5. 21.4 Transmutation and Nuclear Energy
    6. 21.5 Uses of Radioisotopes
    7. 21.6 Biological Effects of Radiation
    8. Key Terms
    9. Key Equations
    10. Summary
    11. Exercises
  23. A | The Periodic Table
  24. B | Essential Mathematics
  25. C | Units and Conversion Factors
  26. D | Fundamental Physical Constants
  27. E | Water Properties
  28. F | Composition of Commercial Acids and Bases
  29. G | Standard Thermodynamic Properties for Selected Substances
  30. H | Ionization Constants of Weak Acids
  31. I | Ionization Constants of Weak Bases
  32. J | Solubility Products
  33. K | Formation Constants for Complex Ions
  34. L | Standard Electrode (Half-Cell) Potentials
  35. M | Half-Lives for Several Radioactive Isotopes
  36. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
    11. Chapter 11
    12. Chapter 12
    13. Chapter 13
    14. Chapter 14
    15. Chapter 15
    16. Chapter 16
    17. Chapter 17
    18. Chapter 18
    19. Chapter 19
    20. Chapter 20
    21. Chapter 21
  37. Index
Water Density (g/mL) at Different Temperatures (°C)
Temperature Density (g/mL)
0 0.9998395
4 0.9999720 (density maximum)
10 0.9997026
15 0.9991026
20 0.9982071
22 0.9977735
25 0.9970479
30 0.9956502
40 0.9922
60 0.9832
80 0.9718
100 0.9584
Table E1
A line graph is titled “Density of Water as a Function of Temperature.” The x-axis is titled “Temperature, degrees Celsius,” and the y-axis is titled “Density, Kilograms per cubic meter.” A line connects plot points at the coordinates 0 and 999.8395, 4 and 999.9720, 10 and 999.7026, 15 and 999.1026, 20 and 998.2071, 22 and 997.7735, 25 and 997.0479, 30 and 995.6502, 40 and 992.2, 60 and 983.2, 80 and 971.8, and 100 and 958.4.
Water Vapor Pressure at Different Temperatures (°C)
Temperature Vapor Pressure (torr) Vapor Pressure (Pa)
0 4.6 613.2812
4 6.1 813.2642
10 9.2 1226.562
15 12.8 1706.522
20 17.5 2333.135
22 19.8 2639.776
25 23.8 3173.064
30 31.8 4239.64
35 42.2 5626.188
40 55.3 7372.707
45 71.9 9585.852
50 92.5 12332.29
55 118.0 15732
60 149.4 19918.31
65 187.5 24997.88
70 233.7 31157.35
75 289.1 38543.39
80 355.1 47342.64
85 433.6 57808.42
90 525.8 70100.71
95 633.9 84512.82
100 760.0 101324.7
Table E2
A line graph is titled “Vapor Pressure as a Function of Temperature.” The x-axis is titled “Temperature, degrees Celsius,” and the y-axis is titled “Vapor pressure, torr.” A line connects plot points at the coordinates 0 and 4.6, 4 and 6.1, 10 and 9.2, 15 and 12.8, 20 and 17.5, 22 and 19.8, 25 and 23.8, 30 and 31.8, 35 and 42.2, 40 and 55.3, 45 and 71.9, 50 and 92.5, 55 and 118.0, 60 and 149.4, 65 and 187.5, 70 and 233.7, 75 and 289.1, 80 and 355.1, 85 and 433.6, 90 and 525.8, 95 and 633.9, and 100 and 760.0.
Water Kw and pKw at Different Temperatures (°C)
Temperature Kw 10–14 pKw1
0 0.112 14.95
5 0.182 14.74
10 0.288 14.54
15 0.465 14.33
20 0.671 14.17
25 0.991 14.00
30 1.432 13.84
35 2.042 13.69
40 2.851 13.55
45 3.917 13.41
50 5.297 13.28
55 7.080 13.15
60 9.311 13.03
75 19.95 12.70
100 56.23 12.25
Table E3
A line graph is titled “Water pK subscript W as a Function of Temperature.” The x-axis is titled “Temperature, degrees Celsius,” and the y-axis is titled “pK subscript W.” A line connects plot points at the coordinates 0 and 14.95, 5 and 14.74, 10 and 14.54, 15 and 14.33, 20 and 14.17, 25 and 14, 30 and 13.84, 35 and 13.69, 40 and 13.55, 45 and 13.41, 50 and 13.28, 55 and 13.15, 60 and 13.03, 75 and 12.7, and 100 and 12.25.
Specific Heat Capacity for Water
C°(H2O(l)) = 4.184 J∙g-1∙°C-1
C°(H2O(s)) = 1.864 J∙K−1∙g−1
C°(H2O(g)) = 2.093 J∙K−1∙g−1
Table E4
Standard Water Melting and Boiling Temperatures and Enthalpies of the Transitions
Temperature (K) ΔH (kJ/mol)
melting 273.15 6.088
boiling 373.15 40.656 (44.016 at 298 K)
Table E5
Water Cryoscopic (Freezing Point Depression) and Ebullioscopic (Boiling Point Elevation) Constants
Kf = 1.86°C∙kg∙mol−1 (cryoscopic constant)
Kb = 0.51°C∙kg∙mol−1 (ebullioscopic constant)
Table E6
A line graph is titled “Water Full-Range Spectral Absorption Curve.” The x-axis is titled “Wavelength” and the y-axis is titled “Absorption ( 1 per meter ).” Evenly spaced tick marks on the x-axis denote 10 nanometers, 100 nanometers, 1 micrometer, 10 micrometers, 100 micrometers, 1 millimeter, and 10 millimeters. Evenly spaced tick marks on the y-axis denote 10 superscript negative two, 10 superscript negative one, 10 superscript zero, 10 superscript one, 10 superscript two, 10 superscript three, 10 superscript four, 10 superscript five, 10 superscript six, 10 superscript seven, and 10 superscript eight. Above the graph, horizontal lines indicate the range of wavelengths for U V, V I S, near I R , mid I R , far I R , and E H F. The graph contains one line that begins at 10 nanometers and a little more than 10 superscript six. Moving from left to right, this line ascends gradually until it reaches a point near 100 nanometers and 10 superscript eight. From this point, the line steeply descends to a point a little more than halfway between 100 nanometers and 1 micrometer, and slightly more than 10 superscript two. This point indicates the end of the range labeled “U V” and the beginning of the range labeled “V I S.” The range labeled “V I S” is shaded with a color spectrum including the full range of Roy G Biv colors. Here, the line briefly descends in the same path as before, and then steeply ascends to a point near 1 micrometer and 10 superscript zero. This point indicates the end of the range labeled “V I S” and the beginning of the range labeled “near I R.” The line continues its steep ascent, with short, abrupt descents in between, until it reaches a point a little more than halfway between 1 micrometer and 10 micrometers, and a little more than 10 superscript six. This point indicates the end of the range labeled “near I R” and the beginning of the range labeled “mid I R.” Here, the line moves steeply and sporadically up and down until it reaches a point a little more than halfway between 10 micrometers and 100 micrometers, and slightly more than 10 superscript five. This point indicates the end of the range labeled “Mid I R” and the beginning of the range labeled “Far I R.” The line descends very gradually to a point slightly more than 1 millimeter and slightly more than 10 superscript four. This point indicates the end of the range labeled “Far I R” and the beginning of the range labeled “E H F.” The line continues its gradual descent to 10 millimeters and slightly more than 10 superscript three. This point indicates the end of the range labeled “E H F.”
Figure E1 The plot shows the extent of light absorption versus wavelength for water. Absorption is reported in reciprocal meters and corresponds to the inverse of the distance light may travel through water before its intensity is diminished by 1/e (~37%).

Footnotes

  • 1 pKw = –log10(Kw)
Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/chemistry-2e/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/chemistry-2e/pages/1-introduction
Citation information

© Feb 14, 2019 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.