Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Calculus Volume 3

C | Review of Pre-Calculus

Calculus Volume 3C | Review of Pre-Calculus

Menu
Table of contents
  1. Preface
  2. 1 Parametric Equations and Polar Coordinates
    1. Introduction
    2. 1.1 Parametric Equations
    3. 1.2 Calculus of Parametric Curves
    4. 1.3 Polar Coordinates
    5. 1.4 Area and Arc Length in Polar Coordinates
    6. 1.5 Conic Sections
    7. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
      4. Review Exercises
  3. 2 Vectors in Space
    1. Introduction
    2. 2.1 Vectors in the Plane
    3. 2.2 Vectors in Three Dimensions
    4. 2.3 The Dot Product
    5. 2.4 The Cross Product
    6. 2.5 Equations of Lines and Planes in Space
    7. 2.6 Quadric Surfaces
    8. 2.7 Cylindrical and Spherical Coordinates
    9. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
      4. Review Exercises
  4. 3 Vector-Valued Functions
    1. Introduction
    2. 3.1 Vector-Valued Functions and Space Curves
    3. 3.2 Calculus of Vector-Valued Functions
    4. 3.3 Arc Length and Curvature
    5. 3.4 Motion in Space
    6. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
      4. Review Exercises
  5. 4 Differentiation of Functions of Several Variables
    1. Introduction
    2. 4.1 Functions of Several Variables
    3. 4.2 Limits and Continuity
    4. 4.3 Partial Derivatives
    5. 4.4 Tangent Planes and Linear Approximations
    6. 4.5 The Chain Rule
    7. 4.6 Directional Derivatives and the Gradient
    8. 4.7 Maxima/Minima Problems
    9. 4.8 Lagrange Multipliers
    10. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
      4. Review Exercises
  6. 5 Multiple Integration
    1. Introduction
    2. 5.1 Double Integrals over Rectangular Regions
    3. 5.2 Double Integrals over General Regions
    4. 5.3 Double Integrals in Polar Coordinates
    5. 5.4 Triple Integrals
    6. 5.5 Triple Integrals in Cylindrical and Spherical Coordinates
    7. 5.6 Calculating Centers of Mass and Moments of Inertia
    8. 5.7 Change of Variables in Multiple Integrals
    9. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
      4. Review Exercises
  7. 6 Vector Calculus
    1. Introduction
    2. 6.1 Vector Fields
    3. 6.2 Line Integrals
    4. 6.3 Conservative Vector Fields
    5. 6.4 Green’s Theorem
    6. 6.5 Divergence and Curl
    7. 6.6 Surface Integrals
    8. 6.7 Stokes’ Theorem
    9. 6.8 The Divergence Theorem
    10. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
      4. Review Exercises
  8. 7 Second-Order Differential Equations
    1. Introduction
    2. 7.1 Second-Order Linear Equations
    3. 7.2 Nonhomogeneous Linear Equations
    4. 7.3 Applications
    5. 7.4 Series Solutions of Differential Equations
    6. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
      4. Review Exercises
  9. A | Table of Integrals
  10. B | Table of Derivatives
  11. C | Review of Pre-Calculus
  12. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
  13. Index

Formulas from Geometry

A=area,A=area, V=Volume,andV=Volume,and S=lateral surface areaS=lateral surface area

The figure shows five geometric figures. The first is a parallelogram with height labeled as h and base as b. Below the figure is the formula for area, A = bh. The second is a triangle with height labeled as h and base as b. Below the figure is the formula for area, A = (1/2)bh.. The third is a trapezoid with the top horizontal side labeled as a, height as h, and base as b. Below the figure is the formula for area, A = (1/2)(a + b)h. The fourth is a circle with radius labeled as r. Below the figure is the formula for area, A= (pi)(r^2), and the formula for circumference, C = 2(pi)r. The fifth is a sector of a circle with radius labeled as r, sector length as s, and angle as theta. Below the figure is the formula for area, A = (1/2)r^2(theta), and sector length, s = r(theta) (theta in radians). The figure shows three solid figures. The first is a cylinder with height labeled as h and radius as r. Below the figure are the formulas for volume, V = (pi)(r^2)h, and surface area, S = 2(pi)rh. The second is a cone with height labeled as h, radius as r, and lateral side length as l. Below the figure are the formulas for volume, V = (1/3)(pi)(r^2)h, and surface area, S = (pi)rl. The third is a sphere with radius labeled as r. Below the figure are the formulas for volume, V = (4/3)(pi)(r^3), and surface area, S = 4(pi)r^2.

Formulas from Algebra

Laws of Exponents

xmxn=xm+nxmxn=xmn(xm)n=xmn xn=1xn(xy)n=xnyn(xy)n=xnyn x1/n=xnxyn=xnynxyn=xnyn xm/n=xmn=(xn)mxmxn=xm+nxmxn=xmn(xm)n=xmn xn=1xn(xy)n=xnyn(xy)n=xnyn x1/n=xnxyn=xnynxyn=xnyn xm/n=xmn=(xn)m

Special Factorizations

x2y2=(x+y)(xy)x3+y3=(x+y)(x2xy+y2)x3y3=(xy)(x2+xy+y2)x2y2=(x+y)(xy)x3+y3=(x+y)(x2xy+y2)x3y3=(xy)(x2+xy+y2)

Quadratic Formula

If ax2+bx+c=0,ax2+bx+c=0, then x=b±b24ca2a.x=b±b24ca2a.

Binomial Theorem

(a+b)n=an+(n1)an1b+(n2)an2b2++(nn1)abn1+bn,(a+b)n=an+(n1)an1b+(n2)an2b2++(nn1)abn1+bn,

where (nk)=n(n1)(n2)(nk+1)k(k1)(k2)321=n!k!(nk)!(nk)=n(n1)(n2)(nk+1)k(k1)(k2)321=n!k!(nk)!

Formulas from Trigonometry

Right-Angle Trigonometry

sinθ=opphypcscθ=hypoppcosθ=adjhypsecθ=hypadjtanθ=oppadjcotθ=adjoppsinθ=opphypcscθ=hypoppcosθ=adjhypsecθ=hypadjtanθ=oppadjcotθ=adjopp

The figure shows a right triangle with the longest side labeled hyp, the shorter leg labeled as opp, and the longer leg labeled as adj. The angle between the hypotenuse and the adjacent side is labeled theta.

Trigonometric Functions of Important Angles

θθ RadiansRadians sinθsinθ cosθcosθ tanθtanθ
0°0° 00 00 11 00
30°30° π/6π/6 1/21/2 3/23/2 3/33/3
45°45° π/4π/4 2/22/2 2/22/2 11
60°60° π/3π/3 3/23/2 1/21/2 33
90°90° π/2π/2 11 00

Fundamental Identities

sin2θ+cos2θ=1sin(θ)=sinθ 1+tan2θ=sec2θcos(θ)=cosθ1+cot2θ=csc2θtan(θ)=tanθsin(π2θ)=cosθsin(θ+2π)=sinθ cos(π2θ)=sinθcos(θ+2π)=cosθ tan(π2θ)=cotθtan(θ+π)=tanθsin2θ+cos2θ=1sin(θ)=sinθ 1+tan2θ=sec2θcos(θ)=cosθ1+cot2θ=csc2θtan(θ)=tanθsin(π2θ)=cosθsin(θ+2π)=sinθ cos(π2θ)=sinθcos(θ+2π)=cosθ tan(π2θ)=cotθtan(θ+π)=tanθ

Law of Sines

sinAa=sinBb=sinCcsinAa=sinBb=sinCc

The figure shows a nonright triangle with vertices labeled A, B, and C. The side opposite angle A is labeled a. The side opposite angle B is labeled b. The side opposite angle C is labeled c.

Law of Cosines

a2=b2+c22bccosAb2=a2+c22accosBc2=a2+b22abcosCa2=b2+c22bccosAb2=a2+c22accosBc2=a2+b22abcosC

Addition and Subtraction Formulas

sin(x+y)=sinxcosy+cosxsinysin(xy)=sinxcosycosxsinycos(x+y)=cosxcosysinxsinycos(xy)=cosxcosy+sinxsinytan(x+y)=tanx+tan y1tanxtan ytan(xy)=tanxtan y1+tanxtan ysin(x+y)=sinxcosy+cosxsinysin(xy)=sinxcosycosxsinycos(x+y)=cosxcosysinxsinycos(xy)=cosxcosy+sinxsinytan(x+y)=tanx+tan y1tanxtan ytan(xy)=tanxtan y1+tanxtan y

Double-Angle Formulas

sin2x=2sinxcosxcos2x=cos2xsin2x=2cos2x1=12sin2xtan2x=2tanx1tan2xsin2x=2sinxcosxcos2x=cos2xsin2x=2cos2x1=12sin2xtan2x=2tanx1tan2x

Half-Angle Formulas

sin2x=1cos2x2cos2x=1+cos2x2sin2x=1cos2x2cos2x=1+cos2x2

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution-NonCommercial-ShareAlike License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/calculus-volume-3/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/calculus-volume-3/pages/1-introduction
Citation information

© Jul 17, 2023 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.