Calculus Volume 3

# C | Review of Pre-Calculus

Calculus Volume 3C | Review of Pre-Calculus

## Formulas from Geometry

$A=area,A=area,$ $V=Volume,andV=Volume,and$ $S=lateral surface areaS=lateral surface area$

## Formulas from Algebra

### Laws of Exponents

$xmxn=xm+nxmxn=xm−n(xm)n=xmn x−n=1xn(xy)n=xnyn(xy)n=xnyn x1/n=xnxyn=xnynxyn=xnyn xm/n=xmn=(xn)mxmxn=xm+nxmxn=xm−n(xm)n=xmn x−n=1xn(xy)n=xnyn(xy)n=xnyn x1/n=xnxyn=xnynxyn=xnyn xm/n=xmn=(xn)m$

### Special Factorizations

$x2−y2=(x+y)(x−y)x3+y3=(x+y)(x2−xy+y2)x3−y3=(x−y)(x2+xy+y2)x2−y2=(x+y)(x−y)x3+y3=(x+y)(x2−xy+y2)x3−y3=(x−y)(x2+xy+y2)$

If $ax2+bx+c=0,ax2+bx+c=0,$ then $x=−b±b2−4ca2a.x=−b±b2−4ca2a.$

### Binomial Theorem

$(a+b)n=an+(n1)an−1b+(n2)an−2b2+⋯+(nn−1)abn−1+bn,(a+b)n=an+(n1)an−1b+(n2)an−2b2+⋯+(nn−1)abn−1+bn,$

where $(nk)=n(n−1)(n−2)⋯(n−k+1)k(k−1)(k−2)⋯3⋅2⋅1=n!k!(n−k)!(nk)=n(n−1)(n−2)⋯(n−k+1)k(k−1)(k−2)⋯3⋅2⋅1=n!k!(n−k)!$

## Formulas from Trigonometry

### Right-Angle Trigonometry

$sinθ=opphypcscθ=hypoppcosθ=adjhypsecθ=hypadjtanθ=oppadjcotθ=adjoppsinθ=opphypcscθ=hypoppcosθ=adjhypsecθ=hypadjtanθ=oppadjcotθ=adjopp$

### Trigonometric Functions of Important Angles

 $θθ$ $RadiansRadians$ $sinθsinθ$ $cosθcosθ$ $tanθtanθ$ $0°0°$ $00$ $00$ $11$ $00$ $30°30°$ $π/6π/6$ $1/21/2$ $3/23/2$ $3/33/3$ $45°45°$ $π/4π/4$ $2/22/2$ $2/22/2$ $11$ $60°60°$ $π/3π/3$ $3/23/2$ $1/21/2$ $33$ $90°90°$ $π/2π/2$ $11$ $00$ —

### Fundamental Identities

$sin2θ+cos2θ=1sin(−θ)=−sinθ 1+tan2θ=sec2θcos(−θ)=cosθ1+cot2θ=csc2θtan(−θ)=−tanθsin(π2−θ)=cosθsin(θ+2π)=sinθ cos(π2−θ)=sinθcos(θ+2π)=cosθ tan(π2−θ)=cotθtan(θ+π)=tanθsin2θ+cos2θ=1sin(−θ)=−sinθ 1+tan2θ=sec2θcos(−θ)=cosθ1+cot2θ=csc2θtan(−θ)=−tanθsin(π2−θ)=cosθsin(θ+2π)=sinθ cos(π2−θ)=sinθcos(θ+2π)=cosθ tan(π2−θ)=cotθtan(θ+π)=tanθ$

### Law of Sines

$sinAa=sinBb=sinCcsinAa=sinBb=sinCc$

### Law of Cosines

$a2=b2+c2−2bccosAb2=a2+c2−2accosBc2=a2+b2−2abcosCa2=b2+c2−2bccosAb2=a2+c2−2accosBc2=a2+b2−2abcosC$

### Double-Angle Formulas

$sin2x=2sinxcosxcos2x=cos2x−sin2x=2cos2x−1=1−2sin2xtan2x=2tanx1−tan2xsin2x=2sinxcosxcos2x=cos2x−sin2x=2cos2x−1=1−2sin2xtan2x=2tanx1−tan2x$

### Half-Angle Formulas

$sin2x=1−cos2x2cos2x=1+cos2x2sin2x=1−cos2x2cos2x=1+cos2x2$

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution-NonCommercial-ShareAlike License and you must attribute OpenStax.

• If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
• If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution: