Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Calculus Volume 3

Key Equations

Calculus Volume 3Key Equations

Key Equations

Double integral Rf(x,y)dA=limm,ni=1mj=1nf(xij*,yij*)ΔARf(x,y)dA=limm,ni=1mj=1nf(xij*,yij*)ΔA
Iterated integral abcdf(x,y)dxdy=ab[cdf(x,y)dy]dxabcdf(x,y)dxdy=ab[cdf(x,y)dy]dx
or
cdbaf(x,y)dxdy=cd[abf(x,y)dx]dycdbaf(x,y)dxdy=cd[abf(x,y)dx]dy
Average value of a function of two variables fave=1AreaRRf(x,y)dxdyfave=1AreaRRf(x,y)dxdy
Iterated integral over a Type I region Df(x,y)dA=Df(x,y)dydx=ab[g1(x)g2(x)f(x,y)dy]dxDf(x,y)dA=Df(x,y)dydx=ab[g1(x)g2(x)f(x,y)dy]dx
Iterated integral over a Type II region Df(x,y)dA=Df(x,y)dxdy=cd[h1(y)h2(y)f(x,y)dx]dyDf(x,y)dA=Df(x,y)dxdy=cd[h1(y)h2(y)f(x,y)dx]dy
Double integral over a polar rectangular region RR Rf(r,θ)dA=limm,ni=1mj=1nf(rij*,θij*)ΔA=limm,ni=1mj=1nf(rij*,θij*)rij*ΔrΔθRf(r,θ)dA=limm,ni=1mj=1nf(rij*,θij*)ΔA=limm,ni=1mj=1nf(rij*,θij*)rij*ΔrΔθ
Double integral over a general polar region Df(r,θ)rdrdθ=θ=αθ=βr=h1(θ)r=h2(θ)f(r,θ)rdrdθDf(r,θ)rdrdθ=θ=αθ=βr=h1(θ)r=h2(θ)f(r,θ)rdrdθ
Triple integral liml,m,ni=1lj=1mk=1nf(xijk*,yijk*,zijk*)ΔxΔyΔz=Bf(x,y,z)dVliml,m,ni=1lj=1mk=1nf(xijk*,yijk*,zijk*)ΔxΔyΔz=Bf(x,y,z)dV
Triple integral in cylindrical coordinates Bg(x,y,z)dV=Bg(rcosθ,rsinθ,z)rdrdθdz=Bf(r,θ,z)rdrdθdzBg(x,y,z)dV=Bg(rcosθ,rsinθ,z)rdrdθdz=Bf(r,θ,z)rdrdθdz
Triple integral in spherical coordinates Bf(ρ,θ,φ)ρ2sinφdρdφdθ=φ=γφ=ψθ=αθ=βρ=aρ=bf(ρ,θ,φ)ρ2sinφdρdφdθBf(ρ,θ,φ)ρ2sinφdρdφdθ=φ=γφ=ψθ=αθ=βρ=aρ=bf(ρ,θ,φ)ρ2sinφdρdφdθ
Mass of a lamina m=limk,li=1kj=1lmij=limk,li=1kj=1lρ(xij*,yij*)ΔA=Rρ(x,y)dAm=limk,li=1kj=1lmij=limk,li=1kj=1lρ(xij*,yij*)ΔA=Rρ(x,y)dA
Moment about the x-axis Mx=limk,li=1kj=1l(yij*)mij=limk,li=1kj=1l(yij*)ρ(xij*,yij*)ΔA=Ryρ(x,y)dAMx=limk,li=1kj=1l(yij*)mij=limk,li=1kj=1l(yij*)ρ(xij*,yij*)ΔA=Ryρ(x,y)dA
Moment about the y-axis My=limk,li=1kj=1l(xij*)mij=limk,li=1kj=1l(xij*)ρ(xij*,yij*)ΔA=Rxρ(x,y)dAMy=limk,li=1kj=1l(xij*)mij=limk,li=1kj=1l(xij*)ρ(xij*,yij*)ΔA=Rxρ(x,y)dA
Center of mass of a lamina x=Mym=Rxρ(x,y)dARρ(x,y)dAx=Mym=Rxρ(x,y)dARρ(x,y)dA and y=Mxm=Ryρ(x,y)dARρ(x,y)dAy=Mxm=Ryρ(x,y)dARρ(x,y)dA
Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution-NonCommercial-ShareAlike License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/calculus-volume-3/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/calculus-volume-3/pages/1-introduction
Citation information

© Jul 25, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.