Calculus Volume 3

# Key Equations

Calculus Volume 3Key Equations

### Key Equations

 Vector-valued function $r(t)=f(t)i+g(t)jorr(t)=f(t)i+g(t)j+h(t)k,orr(t)=〈f(t),g(t)〉orr(t)=〈f(t),g(t),h(t)〉r(t)=f(t)i+g(t)jorr(t)=f(t)i+g(t)j+h(t)k,orr(t)=〈f(t),g(t)〉orr(t)=〈f(t),g(t),h(t)〉$ Limit of a vector-valued function $limt→ar(t)=[limt→af(t)]i+[limt→ag(t)]jorlimt→ar(t)=[limt→af(t)]i+[limt→ag(t)]j+[limt→ah(t)]klimt→ar(t)=[limt→af(t)]i+[limt→ag(t)]jorlimt→ar(t)=[limt→af(t)]i+[limt→ag(t)]j+[limt→ah(t)]k$
 Derivative of a vector-valued function $r′(t)=limΔt→0r(t+Δt)−r(t)Δtr′(t)=limΔt→0r(t+Δt)−r(t)Δt$ Principal unit tangent vector $T(t)=r′(t)‖r′(t)‖T(t)=r′(t)‖r′(t)‖$ Indefinite integral of a vector-valued function $∫[f(t)i+g(t)j+h(t)k]dt=[∫f(t)dt]i+[∫g(t)dt]j+[∫h(t)dt]k∫[f(t)i+g(t)j+h(t)k]dt=[∫f(t)dt]i+[∫g(t)dt]j+[∫h(t)dt]k$ Definite integral of a vector-valued function $∫ab[f(t)i+g(t)j+h(t)k]dt=[∫abf(t)dt]i+[∫abg(t)dt]j+[∫abh(t)dt]k∫ab[f(t)i+g(t)j+h(t)k]dt=[∫abf(t)dt]i+[∫abg(t)dt]j+[∫abh(t)dt]k$
 Arc length of space curve $s=∫ab[f′(t)]2+[g′(t)]2+[h′(t)]2dt=∫ab‖r′(t)‖dts=∫ab[f′(t)]2+[g′(t)]2+[h′(t)]2dt=∫ab‖r′(t)‖dt$ Arc-length function $s(t)=∫at(f′(u))2+(g′(u))2+(h′(u))2duors(t)=∫at‖r′(u)‖dus(t)=∫at(f′(u))2+(g′(u))2+(h′(u))2duors(t)=∫at‖r′(u)‖du$ Curvature $κ=‖T′(t)‖‖r′(t)‖orκ=‖r′(t)×r″(t)‖‖r′(t)‖3orκ=|y″|[1+(y′)2]3/2κ=‖T′(t)‖‖r′(t)‖orκ=‖r′(t)×r″(t)‖‖r′(t)‖3orκ=|y″|[1+(y′)2]3/2$ Principal unit normal vector $N(t)=T′(t)‖T′(t)‖N(t)=T′(t)‖T′(t)‖$ Binormal vector $B(t)=T(t)×N(t)B(t)=T(t)×N(t)$
 Velocity $v(t)=r′(t)v(t)=r′(t)$ Acceleration $a(t)=v′(t)=r″(t)a(t)=v′(t)=r″(t)$ Speed $v(t)=‖v(t)‖=‖r′(t)‖=dsdtv(t)=‖v(t)‖=‖r′(t)‖=dsdt$ Tangential component of acceleration $aT=a·T=v·a‖v‖aT=a·T=v·a‖v‖$ Normal component of acceleration $aN=a·N=‖v×a‖‖v‖=‖a‖2−aT2aN=a·N=‖v×a‖‖v‖=‖a‖2−aT2$
Order a print copy

As an Amazon Associate we earn from qualifying purchases.