Calculus Volume 3

# 1.3Polar Coordinates

Calculus Volume 31.3 Polar Coordinates

### Learning Objectives

• 1.3.1 Locate points in a plane by using polar coordinates.
• 1.3.2 Convert points between rectangular and polar coordinates.
• 1.3.3 Sketch polar curves from given equations.
• 1.3.4 Convert equations between rectangular and polar coordinates.
• 1.3.5 Identify symmetry in polar curves and equations.

The rectangular coordinate system (or Cartesian plane) provides a means of mapping points to ordered pairs and ordered pairs to points. This is called a one-to-one mapping from points in the plane to ordered pairs. The polar coordinate system provides an alternative method of mapping points to ordered pairs. In this section we see that in some circumstances, polar coordinates can be more useful than rectangular coordinates.

### Defining Polar Coordinates

To find the coordinates of a point in the polar coordinate system, consider Figure 1.27. The point $PP$ has Cartesian coordinates $(x,y).(x,y).$ The line segment connecting the origin to the point $PP$ measures the distance from the origin to $PP$ and has length $r.r.$ The angle between the positive $xx$-axis and the line segment has measure $θ.θ.$ This observation suggests a natural correspondence between the coordinate pair $(x,y)(x,y)$ and the values $rr$ and $θ.θ.$ This correspondence is the basis of the polar coordinate system. Note that every point in the Cartesian plane has two values (hence the term ordered pair) associated with it. In the polar coordinate system, each point also has two values associated with it: $rr$ and $θ.θ.$

Figure 1.27 An arbitrary point in the Cartesian plane.

Using right-triangle trigonometry, the following equations are true for the point $P:P:$

$cosθ=xrsox=rcosθcosθ=xrsox=rcosθ$
$sinθ=yrsoy=rsinθ.sinθ=yrsoy=rsinθ.$

Furthermore,

$r2=x2+y2andtanθ=yx.r2=x2+y2andtanθ=yx.$

Each point $(x,y)(x,y)$ in the Cartesian coordinate system can therefore be represented as an ordered pair $(r,θ)(r,θ)$ in the polar coordinate system. The first coordinate is called the radial coordinate and the second coordinate is called the angular coordinate. Every point in the plane can be represented in this form.

Note that the equation $tanθ=y/xtanθ=y/x$ has an infinite number of solutions for any ordered pair $(x,y).(x,y).$ However, if we restrict the solutions to values between $00$ and $2π2π$ then we can assign a unique solution to the quadrant in which the original point $(x,y)(x,y)$ is located. Then the corresponding value of r is positive, so $r2=x2+y2.r2=x2+y2.$

Theorem 1.4

#### Converting Points between Coordinate Systems

Given a point $PP$ in the plane with Cartesian coordinates $(x,y)(x,y)$ and polar coordinates $(r,θ),(r,θ),$ the following conversion formulas hold true:

$x=rcosθandy=rsinθ,x=rcosθandy=rsinθ,$
1.7
$r2=x2+y2andtanθ=yx.r2=x2+y2andtanθ=yx.$
1.8

These formulas can be used to convert from rectangular to polar or from polar to rectangular coordinates.

### Example 1.10

#### Converting between Rectangular and Polar Coordinates

Convert each of the following points into polar coordinates.

1. $(1,1)(1,1)$
2. $(−3,4)(−3,4)$
3. $(0,3)(0,3)$
4. $(53,−5)(53,−5)$

Convert each of the following points into rectangular coordinates.

1. $(3,π/3)(3,π/3)$
2. $(2,3π/2)(2,3π/2)$
3. $(6,−5π/6)(6,−5π/6)$
Checkpoint 1.10

Convert $(−8,−8)(−8,−8)$ into polar coordinates and $(4,2π3)(4,2π3)$ into rectangular coordinates.

The polar representation of a point is not unique. For example, the polar coordinates $(2,π3)(2,π3)$ and $(2,7π3)(2,7π3)$ both represent the point $(1,3)(1,3)$ in the rectangular system. Also, the value of $rr$ can be negative. Therefore, the point with polar coordinates $(−2,4π3)(−2,4π3)$ also represents the point $(1,3)(1,3)$ in the rectangular system, as we can see by using Equation 1.8:

$x=rcosθ=−2cos(4π3)=−2(−12)=1andy=rsinθ=−2sin(4π3)=−2(−32)=3.x=rcosθ=−2cos(4π3)=−2(−12)=1andy=rsinθ=−2sin(4π3)=−2(−32)=3.$

Every point in the plane has an infinite number of representations in polar coordinates. However, each point in the plane has only one representation in the rectangular coordinate system.

Note that the polar representation of a point in the plane also has a visual interpretation. In particular, $rr$ is the directed distance that the point lies from the origin, and $θθ$ measures the angle that the line segment from the origin to the point makes with the positive $xx$-axis. Positive angles are measured in a counterclockwise direction and negative angles are measured in a clockwise direction. The polar coordinate system appears in the following figure.

Figure 1.28 The polar coordinate system.

The line segment starting from the center of the graph going to the right (called the positive x-axis in the Cartesian system) is the polar axis. The center point is the pole, or origin, of the coordinate system, and corresponds to $r=0.r=0.$ The innermost circle shown in Figure 1.28 contains all points a distance of 1 unit from the pole, and is represented by the equation $r=1.r=1.$ Then $r=2r=2$ is the set of points 2 units from the pole, and so on. The line segments emanating from the pole correspond to fixed angles. To plot a point in the polar coordinate system, start with the angle. If the angle is positive, then measure the angle from the polar axis in a counterclockwise direction. If it is negative, then measure it clockwise. If the value of $rr$ is positive, move that distance along the terminal ray of the angle. If it is negative, move along the ray that is opposite the terminal ray of the given angle.

### Example 1.11

#### Plotting Points in the Polar Plane

Plot each of the following points on the polar plane.

1. $(2,π4)(2,π4)$
2. $(−3,2π3)(−3,2π3)$
3. $(4,5π4)(4,5π4)$
Checkpoint 1.11

Plot $(4,5π3)(4,5π3)$ and $(−3,−7π2)(−3,−7π2)$ on the polar plane.

### Polar Curves

Now that we know how to plot points in the polar coordinate system, we can discuss how to plot curves. In the rectangular coordinate system, we can graph a function $y=f(x)y=f(x)$ and create a curve in the Cartesian plane. In a similar fashion, we can graph a curve that is generated by a function $r=f(θ).r=f(θ).$

The general idea behind graphing a function in polar coordinates is the same as graphing a function in rectangular coordinates. Start with a list of values for the independent variable $(θ(θ$ in this case) and calculate the corresponding values of the dependent variable $r.r.$ This process generates a list of ordered pairs, which can be plotted in the polar coordinate system. Finally, connect the points, and take advantage of any patterns that may appear. The function may be periodic, for example, which indicates that only a limited number of values for the independent variable are needed.

Problem-Solving Strategy: Plotting a Curve in Polar Coordinates
1. Create a table with two columns. The first column is for $θ,θ,$ and the second column is for $r.r.$
2. Create a list of values for $θ.θ.$
3. Calculate the corresponding $rr$ values for each $θ.θ.$
4. Plot each ordered pair $(r,θ)(r,θ)$ on the coordinate axes.
5. Connect the points and look for a pattern.

### Example 1.12

#### Graphing a Function in Polar Coordinates

Graph the curve defined by the function $r=4sinθ.r=4sinθ.$ Identify the curve and rewrite the equation in rectangular coordinates.

Checkpoint 1.12

Create a graph of the curve defined by the function $r=4+4cosθ.r=4+4cosθ.$

The graph in Example 1.12 was that of a circle. The equation of the circle can be transformed into rectangular coordinates using the coordinate transformation formulas in Equation 1.8. Example 1.14 gives some more examples of functions for transforming from polar to rectangular coordinates.

### Example 1.13

#### Transforming Polar Equations to Rectangular Coordinates

Rewrite each of the following equations in rectangular coordinates and identify the graph.

1. $θ=π3θ=π3$
2. $r=3r=3$
3. $r=6cosθ−8sinθr=6cosθ−8sinθ$
Checkpoint 1.13

Rewrite the equation $r=secθtanθr=secθtanθ$ in rectangular coordinates and identify its graph.

We have now seen several examples of drawing graphs of curves defined by polar equations. A summary of some common curves is given in the tables below. In each equation, a and b are arbitrary constants.

Figure 1.31
Figure 1.32

A cardioid is a special case of a limaçon (pronounced “lee-mah-son”), in which $a=ba=b$ or $a=−b.a=−b.$ The rose is a very interesting curve. Notice that the graph of $r=3sin2θr=3sin2θ$ has four petals. However, the graph of $r=3sin3θr=3sin3θ$ has three petals as shown.

Figure 1.33 Graph of $r=3sin3θ.r=3sin3θ.$

If the coefficient of $θθ$ is even, the graph has twice as many petals as the coefficient. If the coefficient of $θθ$ is odd, then the number of petals equals the coefficient. You are encouraged to explore why this happens. Even more interesting graphs emerge when the coefficient of $θθ$ is not an integer. For example, if it is rational, then the curve is closed; that is, it eventually ends where it started (Figure 1.34(a)). However, if the coefficient is irrational, then the curve never closes (Figure 1.34(b)). Although it may appear that the curve is closed, a closer examination reveals that the petals just above the positive x axis are slightly thicker. This is because the petal does not quite match up with the starting point.

Figure 1.34 Polar rose graphs of functions with (a) rational coefficient and (b) irrational coefficient. Note that the rose in part (b) would actually fill the entire circle if plotted in full.

Since the curve defined by the graph of $r=3sin(πθ)r=3sin(πθ)$ never closes, the curve depicted in Figure 1.34(b) is only a partial depiction. In fact, this is an example of a space-filling curve. A space-filling curve is one that in fact occupies a two-dimensional subset of the real plane. In this case the curve occupies the circle of radius 3 centered at the origin.

### Example 1.14

#### Chapter Opener: Describing a Spiral

Recall the chambered nautilus introduced in the chapter opener. This creature displays a spiral when half the outer shell is cut away. It is possible to describe a spiral using rectangular coordinates. Figure 1.35 shows a spiral in rectangular coordinates. How can we describe this curve mathematically?

Figure 1.35 How can we describe a spiral graph mathematically?

Suppose a curve is described in the polar coordinate system via the function $r=f(θ).r=f(θ).$ Since we have conversion formulas from polar to rectangular coordinates given by

$x=rcosθy=rsinθ,x=rcosθy=rsinθ,$

it is possible to rewrite these formulas using the function

$x=f(θ)cosθy=f(θ)sinθ.x=f(θ)cosθy=f(θ)sinθ.$

This step gives a parameterization of the curve in rectangular coordinates using $θθ$ as the parameter. For example, the spiral formula $r=a+bθr=a+bθ$ from Figure 1.31 becomes

$x=(a+bθ)cosθy=(a+bθ)sinθ.x=(a+bθ)cosθy=(a+bθ)sinθ.$

Letting $θθ$ range from $−∞−∞$ to $∞∞$ generates the entire spiral.

### Symmetry in Polar Coordinates

When studying symmetry of functions in rectangular coordinates (i.e., in the form $y=f(x)),y=f(x)),$ we talk about symmetry with respect to the y-axis and symmetry with respect to the origin. In particular, if $f(−x)=f(x)f(−x)=f(x)$ for all $xx$ in the domain of $f,f,$ then $ff$ is an even function and its graph is symmetric with respect to the y-axis. If $f(−x)=−f(x)f(−x)=−f(x)$ for all $xx$ in the domain of $f,f,$ then $ff$ is an odd function and its graph is symmetric with respect to the origin. By determining which types of symmetry a graph exhibits, we can learn more about the shape and appearance of the graph. Symmetry can also reveal other properties of the function that generates the graph. Symmetry in polar curves works in a similar fashion.

Theorem 1.5

#### Symmetry in Polar Curves and Equations

Consider a curve generated by the function $r=f(θ)r=f(θ)$ in polar coordinates.

1. The curve is symmetric about the polar axis if for every point $(r,θ)(r,θ)$ on the graph, the point $(r,−θ)(r,−θ)$ is also on the graph. Similarly, the equation $r=f(θ)r=f(θ)$ is unchanged by replacing $θθ$ with $−θ.−θ.$
2. The curve is symmetric about the pole if for every point $(r,θ)(r,θ)$ on the graph, the point $(r,π+θ)(r,π+θ)$ is also on the graph. Similarly, the equation $r=f(θ)r=f(θ)$ is unchanged when replacing $rr$ with $−r,−r,$ or $θθ$ with $π+θ.π+θ.$
3. The curve is symmetric about the vertical line $θ=π2θ=π2$ if for every point $(r,θ)(r,θ)$ on the graph, the point $(r,π−θ)(r,π−θ)$ is also on the graph. Similarly, the equation $r=f(θ)r=f(θ)$ is unchanged when $θθ$ is replaced by $π−θ.π−θ.$

The following table shows examples of each type of symmetry. ### Example 1.15

#### Using Symmetry to Graph a Polar Equation

Find the symmetry of the rose defined by the equation $r=3sin(2θ)r=3sin(2θ)$ and create a graph.

Checkpoint 1.14

Determine the symmetry of the graph determined by the equation $r=2cos(3θ)r=2cos(3θ)$ and create a graph.

### Section 1.3 Exercises

In the following exercises, plot the point whose polar coordinates are given by first constructing the angle $θθ$ and then marking off the distance r along the ray.

125.

$(3,π6)(3,π6)$

126.

$(−2,5π3)(−2,5π3)$

127.

$(0,7π6)(0,7π6)$

128.

$(−4,3π4)(−4,3π4)$

129.

$(1,π4)(1,π4)$

130.

$(2,5π6)(2,5π6)$

131.

$(1,π2)(1,π2)$

For the following exercises, consider the polar graph below. Give two sets of polar coordinates for each point. 132.

Coordinates of point A.

133.

Coordinates of point B.

134.

Coordinates of point C.

135.

Coordinates of point D.

For the following exercises, the rectangular coordinates of a point are given. Find two sets of polar coordinates for the point in $(0,2π].(0,2π].$ Round to three decimal places.

136.

$(2,2)(2,2)$

137.

$(3,−4)(3,−4)$

138.

$(8,15)(8,15)$

139.

$(−6,8)(−6,8)$

140.

$(4,3)(4,3)$

141.

$(3,−3)(3,−3)$

For the following exercises, find rectangular coordinates for the given point in polar coordinates.

142.

$(2,5π4)(2,5π4)$

143.

$(−2,π6)(−2,π6)$

144.

$(5,π3)(5,π3)$

145.

$(1,7π6)(1,7π6)$

146.

$(−3,3π4)(−3,3π4)$

147.

$(0,π2)(0,π2)$

148.

$(−4.5,6.5)(−4.5,6.5)$

For the following exercises, determine whether the graphs of the polar equation are symmetric with respect to the $xx$-axis, the $yy$-axis, or the origin.

149.

$r=3sin(2θ)r=3sin(2θ)$

150.

$r2=9cosθr2=9cosθ$

151.

$r=cos(θ5)r=cos(θ5)$

152.

$r=2secθr=2secθ$

153.

$r=1+cosθr=1+cosθ$

For the following exercises, describe the graph of each polar equation. Confirm each description by converting into a rectangular equation.

154.

$r=3r=3$

155.

$θ=π4θ=π4$

156.

$r=secθr=secθ$

157.

$r=cscθr=cscθ$

For the following exercises, convert the rectangular equation to polar form and sketch its graph.

158.

$x2+y2=16x2+y2=16$

159.

$x2−y2=16x2−y2=16$

160.

$x=8x=8$

For the following exercises, convert the rectangular equation to polar form and sketch its graph.

161.

$3x−y=23x−y=2$

162.

$y2=4xy2=4x$

For the following exercises, convert the polar equation to rectangular form and sketch its graph.

163.

$r=4sinθr=4sinθ$

164.

$r=6cosθr=6cosθ$

165.

$r=θr=θ$

166.

$r=cotθcscθr=cotθcscθ$

For the following exercises, sketch a graph of the polar equation and identify any symmetry.

167.

$r=1+sinθr=1+sinθ$

168.

$r=3−2cosθr=3−2cosθ$

169.

$r=2−2sinθr=2−2sinθ$

170.

$r=5−4sinθr=5−4sinθ$

171.

$r=3cos(2θ)r=3cos(2θ)$

172.

$r=3sin(2θ)r=3sin(2θ)$

173.

$r=2cos(3θ)r=2cos(3θ)$

174.

$r=3cos(θ2)r=3cos(θ2)$

175.

$r2=4cos(2θ)r2=4cos(2θ)$

176.

$r2=4sinθr2=4sinθ$

177.

$r=2θr=2θ$

178.

[T] The graph of $r=2cos(2θ)sec(θ).r=2cos(2θ)sec(θ).$ is called a strophoid. Use a graphing utility to sketch the graph, and, from the graph, determine the asymptote.

179.

[T] Use a graphing utility and sketch the graph of $r=62sinθ−3cosθ.r=62sinθ−3cosθ.$

180.

[T] Use a graphing utility to graph $r=11−cosθ.r=11−cosθ.$

181.

[T] Use technology to graph $r=esin(θ)−2cos(4θ).r=esin(θ)−2cos(4θ).$

182.

[T] Use technology to plot $r=sin(3θ7)r=sin(3θ7)$ (use the interval $0≤θ≤14π).0≤θ≤14π).$

183.

Without using technology, sketch the polar curve $θ=2π3.θ=2π3.$

184.

[T] Use a graphing utility to plot $r=θsinθr=θsinθ$ for $−π≤θ≤π.−π≤θ≤π.$

185.

[T] Use technology to plot $r=e−0.1θr=e−0.1θ$ for $−10≤θ≤10.−10≤θ≤10.$

186.

[T] There is a curve known as the “Black Hole.” Use technology to plot $r=e−0.01θr=e−0.01θ$ for $−100≤θ≤100.−100≤θ≤100.$

187.

[T] Use the results of the preceding two problems to explore the graphs of $r=e−0.001θr=e−0.001θ$ and $r=e−0.0001θr=e−0.0001θ$ for $|θ|>100.|θ|>100.$