Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Calculus Volume 2

Introduction

Calculus Volume 2Introduction

This is a diagram of several iterations of the Koch snowflake, which is created through an interative process. The first case is an equilateral triangle. Five times, the middle third of each line segment is replaced with an equilateral triangle pointing outward.
Figure 5.1 The Koch snowflake is constructed by using an iterative process. Starting with an equilateral triangle, at each step of the process the middle third of each line segment is removed and replaced with an equilateral triangle pointing outward.

The Koch snowflake is constructed from an infinite number of nonoverlapping equilateral triangles. Consequently, we can express its area as a sum of infinitely many terms. How do we add an infinite number of terms? Can a sum of an infinite number of terms be finite? To answer these questions, we need to introduce the concept of an infinite series, a sum with infinitely many terms. Having defined the necessary tools, we will be able to calculate the area of the Koch snowflake (see Example 5.8).

The topic of infinite series may seem unrelated to differential and integral calculus. In fact, an infinite series whose terms involve powers of a variable is a powerful tool that we can use to express functions as “infinite polynomials.” We can use infinite series to evaluate complicated functions, approximate definite integrals, and create new functions. In addition, infinite series are used to solve differential equations that model physical behavior, from tiny electronic circuits to Earth-orbiting satellites.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution-NonCommercial-ShareAlike License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/calculus-volume-2/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/calculus-volume-2/pages/1-introduction
Citation information

© Jul 25, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.