Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Biology

Visual Connection Questions

BiologyVisual Connection Questions

1.

Figure 27.5 If a Hox 13 gene in a mouse was replaced with a Hox 1 gene, how might this alter animal development?

2.

Figure 27.6 Which of the following statements is false?

  1. Eumetazoans have specialized tissues and parazoans don’t.
  2. Lophotrochozoa and Ecdysozoa are both Bilataria.
  3. Acoela and Cnidaria both possess radial symmetry.
  4. Arthropods are more closely related to nematodes than they are to annelids.
3.

Figure 27.9 Which of the following statements about diploblasts and triploblasts is false?

  1. Animals that display radial symmetry are diploblasts.
  2. Animals that display bilateral symmetry are triploblasts.
  3. The endoderm gives rise to the lining of the digestive tract and the respiratory tract.
  4. The mesoderm gives rise to the central nervous system.
Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/biology/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/biology/pages/1-introduction
Citation information

© Feb 14, 2022 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.