Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Biology for AP® Courses

Science Practice Challenge Questions

Biology for AP® CoursesScience Practice Challenge Questions

Table of contents
  1. Preface
  2. The Chemistry of Life
    1. 1 The Study of Life
      1. Introduction
      2. 1.1 The Science of Biology
      3. 1.2 Themes and Concepts of Biology
      4. Key Terms
      5. Chapter Summary
      6. Review Questions
      7. Critical Thinking Questions
      8. Test Prep for AP® Courses
    2. 2 The Chemical Foundation of Life
      1. Introduction
      2. 2.1 Atoms, Isotopes, Ions, and Molecules: The Building Blocks
      3. 2.2 Water
      4. 2.3 Carbon
      5. Key Terms
      6. Chapter Summary
      7. Review Questions
      8. Critical Thinking Questions
      9. Test Prep for AP® Courses
      10. Science Practice Challenge Questions
    3. 3 Biological Macromolecules
      1. Introduction
      2. 3.1 Synthesis of Biological Macromolecules
      3. 3.2 Carbohydrates
      4. 3.3 Lipids
      5. 3.4 Proteins
      6. 3.5 Nucleic Acids
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
      12. Science Practice Challenge Questions
  3. The Cell
    1. 4 Cell Structure
      1. Introduction
      2. 4.1 Studying Cells
      3. 4.2 Prokaryotic Cells
      4. 4.3 Eukaryotic Cells
      5. 4.4 The Endomembrane System and Proteins
      6. 4.5 Cytoskeleton
      7. 4.6 Connections between Cells and Cellular Activities
      8. Key Terms
      9. Chapter Summary
      10. Review Questions
      11. Critical Thinking Questions
      12. Test Prep for AP® Courses
      13. Science Practice Challenge Questions
    2. 5 Structure and Function of Plasma Membranes
      1. Introduction
      2. 5.1 Components and Structure
      3. 5.2 Passive Transport
      4. 5.3 Active Transport
      5. 5.4 Bulk Transport
      6. Key Terms
      7. Chapter Summary
      8. Review Questions
      9. Critical Thinking Questions
      10. Test Prep for AP® Courses
      11. Science Practice Challenge Questions
    3. 6 Metabolism
      1. Introduction
      2. 6.1 Energy and Metabolism
      3. 6.2 Potential, Kinetic, Free, and Activation Energy
      4. 6.3 The Laws of Thermodynamics
      5. 6.4 ATP: Adenosine Triphosphate
      6. 6.5 Enzymes
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
      12. Science Practice Challenge Questions
    4. 7 Cellular Respiration
      1. Introduction
      2. 7.1 Energy in Living Systems
      3. 7.2 Glycolysis
      4. 7.3 Oxidation of Pyruvate and the Citric Acid Cycle
      5. 7.4 Oxidative Phosphorylation
      6. 7.5 Metabolism without Oxygen
      7. 7.6 Connections of Carbohydrate, Protein, and Lipid Metabolic Pathways
      8. 7.7 Regulation of Cellular Respiration
      9. Key Terms
      10. Chapter Summary
      11. Review Questions
      12. Critical Thinking Questions
      13. Test Prep for AP® Courses
      14. Science Practice Challenge Questions
    5. 8 Photosynthesis
      1. Introduction
      2. 8.1 Overview of Photosynthesis
      3. 8.2 The Light-Dependent Reaction of Photosynthesis
      4. 8.3 Using Light to Make Organic Molecules
      5. Key Terms
      6. Chapter Summary
      7. Review Questions
      8. Critical Thinking Questions
      9. Test Prep for AP® Courses
      10. Science Practice Challenge Questions
    6. 9 Cell Communication
      1. Introduction
      2. 9.1 Signaling Molecules and Cellular Receptors
      3. 9.2 Propagation of the Signal
      4. 9.3 Response to the Signal
      5. 9.4 Signaling in Single-Celled Organisms
      6. Key Terms
      7. Chapter Summary
      8. Review Questions
      9. Critical Thinking Questions
      10. Test Prep for AP® Courses
      11. Science Practice Challenge Questions
    7. 10 Cell Reproduction
      1. Introduction
      2. 10.1 Cell Division
      3. 10.2 The Cell Cycle
      4. 10.3 Control of the Cell Cycle
      5. 10.4 Cancer and the Cell Cycle
      6. 10.5 Prokaryotic Cell Division
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
      12. Science Practice Challenge Questions
  4. Genetics
    1. 11 Meiosis and Sexual Reproduction
      1. Introduction
      2. 11.1 The Process of Meiosis
      3. 11.2 Sexual Reproduction
      4. Key Terms
      5. Chapter Summary
      6. Review Questions
      7. Critical Thinking Questions
      8. Test Prep for AP® Courses
      9. Science Practice Challenge Questions
    2. 12 Mendel's Experiments and Heredity
      1. Introduction
      2. 12.1 Mendel’s Experiments and the Laws of Probability
      3. 12.2 Characteristics and Traits
      4. 12.3 Laws of Inheritance
      5. Key Terms
      6. Chapter Summary
      7. Review Questions
      8. Critical Thinking Questions
      9. Test Prep for AP® Courses
      10. Science Practice Challenge Questions
    3. 13 Modern Understandings of Inheritance
      1. Introduction
      2. 13.1 Chromosomal Theory and Genetic Linkages
      3. 13.2 Chromosomal Basis of Inherited Disorders
      4. Key Terms
      5. Chapter Summary
      6. Review Questions
      7. Critical Thinking Questions
      8. Test Prep for AP® Courses
      9. Science Practice Challenge Questions
    4. 14 DNA Structure and Function
      1. Introduction
      2. 14.1 Historical Basis of Modern Understanding
      3. 14.2 DNA Structure and Sequencing
      4. 14.3 Basics of DNA Replication
      5. 14.4 DNA Replication in Prokaryotes
      6. 14.5 DNA Replication in Eukaryotes
      7. 14.6 DNA Repair
      8. Key Terms
      9. Chapter Summary
      10. Review Questions
      11. Critical Thinking Questions
      12. Test Prep for AP® Courses
      13. Science Practice Challenge Questions
    5. 15 Genes and Proteins
      1. Introduction
      2. 15.1 The Genetic Code
      3. 15.2 Prokaryotic Transcription
      4. 15.3 Eukaryotic Transcription
      5. 15.4 RNA Processing in Eukaryotes
      6. 15.5 Ribosomes and Protein Synthesis
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
      12. Science Practice Challenge Questions
    6. 16 Gene Regulation
      1. Introduction
      2. 16.1 Regulation of Gene Expression
      3. 16.2 Prokaryotic Gene Regulation
      4. 16.3 Eukaryotic Epigenetic Gene Regulation
      5. 16.4 Eukaryotic Transcriptional Gene Regulation
      6. 16.5 Eukaryotic Post-transcriptional Gene Regulation
      7. 16.6 Eukaryotic Translational and Post-translational Gene Regulation
      8. 16.7 Cancer and Gene Regulation
      9. Key Terms
      10. Chapter Summary
      11. Review Questions
      12. Critical Thinking Questions
      13. Test Prep for AP® Courses
      14. Science Practice Challenge Questions
    7. 17 Biotechnology and Genomics
      1. Introduction
      2. 17.1 Biotechnology
      3. 17.2 Mapping Genomes
      4. 17.3 Whole-Genome Sequencing
      5. 17.4 Applying Genomics
      6. 17.5 Genomics and Proteomics
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
      12. Science Practice Challenge Questions
  5. Evolutionary Processes
    1. 18 Evolution and Origin of Species
      1. Introduction
      2. 18.1 Understanding Evolution
      3. 18.2 Formation of New Species
      4. 18.3 Reconnection and Rates of Speciation
      5. Key Terms
      6. Chapter Summary
      7. Review Questions
      8. Critical Thinking Questions
      9. Test Prep for AP® Courses
      10. Science Practice Challenge Questions
    2. 19 The Evolution of Populations
      1. Introduction
      2. 19.1 Population Evolution
      3. 19.2 Population Genetics
      4. 19.3 Adaptive Evolution
      5. Key Terms
      6. Chapter Summary
      7. Review Questions
      8. Critical Thinking Questions
      9. Test Prep for AP® Courses
      10. Science Practice Challenge Questions
    3. 20 Phylogenies and the History of Life
      1. Introduction
      2. 20.1 Organizing Life on Earth
      3. 20.2 Determining Evolutionary Relationships
      4. 20.3 Perspectives on the Phylogenetic Tree
      5. Key Terms
      6. Chapter Summary
      7. Review Questions
      8. Critical Thinking Questions
      9. Test Prep for AP® Courses
      10. Science Practice Challenge Questions
  6. Biological Diversity
    1. 21 Viruses
      1. Introduction
      2. 21.1 Viral Evolution, Morphology, and Classification
      3. 21.2 Virus Infection and Hosts
      4. 21.3 Prevention and Treatment of Viral Infections
      5. 21.4 Other Acellular Entities: Prions and Viroids
      6. Key Terms
      7. Chapter Summary
      8. Review Questions
      9. Critical Thinking Questions
      10. Test Prep for AP® Courses
      11. Science Practice Challenge Questions
    2. 22 Prokaryotes: Bacteria and Archaea
      1. Introduction
      2. 22.1 Prokaryotic Diversity
      3. 22.2 Structure of Prokaryotes
      4. 22.3 Prokaryotic Metabolism
      5. 22.4 Bacterial Diseases in Humans
      6. 22.5 Beneficial Prokaryotes
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
      12. Science Practice Challenge Questions
  7. Plant Structure and Function
    1. 23 Plant Form and Physiology
      1. Introduction
      2. 23.1 The Plant Body
      3. 23.2 Stems
      4. 23.3 Roots
      5. 23.4 Leaves
      6. 23.5 Transport of Water and Solutes in Plants
      7. 23.6 Plant Sensory Systems and Responses
      8. Key Terms
      9. Chapter Summary
      10. Review Questions
      11. Critical Thinking Questions
      12. Test Prep for AP® Courses
      13. Science Practice Challenge Questions
  8. Animal Structure and Function
    1. 24 The Animal Body: Basic Form and Function
      1. Introduction
      2. 24.1 Animal Form and Function
      3. 24.2 Animal Primary Tissues
      4. 24.3 Homeostasis
      5. Key Terms
      6. Chapter Summary
      7. Review Questions
      8. Critical Thinking Questions
      9. Test Prep for AP® Courses
    2. 25 Animal Nutrition and the Digestive System
      1. Introduction
      2. 25.1 Digestive Systems
      3. 25.2 Nutrition and Energy Production
      4. 25.3 Digestive System Processes
      5. 25.4 Digestive System Regulation
      6. Key Terms
      7. Chapter Summary
      8. Review Questions
      9. Critical Thinking Questions
      10. Test Prep for AP® Courses
      11. Science Practice Challenge Questions
    3. 26 The Nervous System
      1. Introduction
      2. 26.1 Neurons and Glial Cells
      3. 26.2 How Neurons Communicate
      4. 26.3 The Central Nervous System
      5. 26.4 The Peripheral Nervous System
      6. 26.5 Nervous System Disorders
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
      12. Science Practice Challenge Questions
    4. 27 Sensory Systems
      1. Introduction
      2. 27.1 Sensory Processes
      3. 27.2 Somatosensation
      4. 27.3 Taste and Smell
      5. 27.4 Hearing and Vestibular Sensation
      6. 27.5 Vision
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Science Practice Challenge Questions
    5. 28 The Endocrine System
      1. Introduction
      2. 28.1 Types of Hormones
      3. 28.2 How Hormones Work
      4. 28.3 Regulation of Body Processes
      5. 28.4 Regulation of Hormone Production
      6. 28.5 Endocrine Glands
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
      12. Science Practice Challenge Questions
    6. 29 The Musculoskeletal System
      1. Introduction
      2. 29.1 Types of Skeletal Systems
      3. 29.2 Bone
      4. 29.3 Joints and Skeletal Movement
      5. 29.4 Muscle Contraction and Locomotion
      6. Key Terms
      7. Chapter Summary
      8. Review Questions
      9. Critical Thinking Questions
      10. Science Practice Challenge Questions
    7. 30 The Respiratory System
      1. Introduction
      2. 30.1 Systems of Gas Exchange
      3. 30.2 Gas Exchange across Respiratory Surfaces
      4. 30.3 Breathing
      5. 30.4 Transport of Gases in Human Bodily Fluids
      6. Key Terms
      7. Chapter Summary
      8. Review Questions
      9. Critical Thinking Questions
      10. Test Prep for AP® Courses
      11. Science Practice Challenge Questions
    8. 31 The Circulatory System
      1. Introduction
      2. 31.1 Overview of the Circulatory System
      3. 31.2 Components of the Blood
      4. 31.3 Mammalian Heart and Blood Vessels
      5. 31.4 Blood Flow and Blood Pressure Regulation
      6. Key Terms
      7. Chapter Summary
      8. Review Questions
      9. Critical Thinking Questions
      10. Test Prep for AP® Courses
      11. Science Practice Challenge Questions
    9. 32 Osmotic Regulation and Excretion
      1. Introduction
      2. 32.1 Osmoregulation and Osmotic Balance
      3. 32.2 The Kidneys and Osmoregulatory Organs
      4. 32.3 Excretion Systems
      5. 32.4 Nitrogenous Wastes
      6. 32.5 Hormonal Control of Osmoregulatory Functions
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
    10. 33 The Immune System
      1. Introduction
      2. 33.1 Innate Immune Response
      3. 33.2 Adaptive Immune Response
      4. 33.3 Antibodies
      5. 33.4 Disruptions in the Immune System
      6. Key Terms
      7. Chapter Summary
      8. Review Questions
      9. Critical Thinking Questions
      10. Test Prep for AP® Courses
      11. Science Practice Challenge Questions
    11. 34 Animal Reproduction and Development
      1. Introduction
      2. 34.1 Reproduction Methods
      3. 34.2 Fertilization
      4. 34.3 Human Reproductive Anatomy and Gametogenesis
      5. 34.4 Hormonal Control of Human Reproduction
      6. 34.5 Fertilization and Early Embryonic Development
      7. 34.6 Organogenesis and Vertebrate Formation
      8. 34.7 Human Pregnancy and Birth
      9. Key Terms
      10. Chapter Summary
      11. Review Questions
      12. Critical Thinking Questions
      13. Test Prep for AP® Courses
      14. Science Practice Challenge Questions
  9. Ecology
    1. 35 Ecology and the Biosphere
      1. Introduction
      2. 35.1 The Scope of Ecology
      3. 35.2 Biogeography
      4. 35.3 Terrestrial Biomes
      5. 35.4 Aquatic Biomes
      6. 35.5 Climate and the Effects of Global Climate Change
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
      12. Science Practice Challenge Questions
    2. 36 Population and Community Ecology
      1. Introduction
      2. 36.1 Population Demography
      3. 36.2 Life Histories and Natural Selection
      4. 36.3 Environmental Limits to Population Growth
      5. 36.4 Population Dynamics and Regulation
      6. 36.5 Human Population Growth
      7. 36.6 Community Ecology
      8. 36.7 Behavioral Biology: Proximate and Ultimate Causes of Behavior
      9. Key Terms
      10. Chapter Summary
      11. Review Questions
      12. Critical Thinking Questions
      13. Test Prep for AP® Courses
      14. Science Practice Challenge Questions
    3. 37 Ecosystems
      1. Introduction
      2. 37.1 Ecology for Ecosystems
      3. 37.2 Energy Flow through Ecosystems
      4. 37.3 Biogeochemical Cycles
      5. Key Terms
      6. Chapter Summary
      7. Review Questions
      8. Critical Thinking Questions
      9. Test Prep for AP® Courses
      10. Science Practice Challenge Questions
    4. 38 Conservation Biology and Biodiversity
      1. Introduction
      2. 38.1 The Biodiversity Crisis
      3. 38.2 The Importance of Biodiversity to Human Life
      4. 38.3 Threats to Biodiversity
      5. 38.4 Preserving Biodiversity
      6. Key Terms
      7. Chapter Summary
      8. Review Questions
      9. Critical Thinking Questions
      10. Test Prep for AP® Courses
  10. A | The Periodic Table of Elements
  11. B | Geological Time
  12. C | Measurements and the Metric System
  13. Index
53.

Combustion of carbohydrates, like in a fireplace, is a reduction-oxidation reaction in which the carbon atom is oxidized and the oxygen atom is reduced, producing water and carbon dioxide. Oxidative phosphorylation and glycolysis are also reduction-oxidation reactions that produce the same products. Explain the differences and similarities among these abiotic and biotic processes in terms of the changes in entropy and heat that contribute to the free energy extracted from chemical bonds, the spontaneity of each, and the role of catalysis.

54.

A. [Extension] Living systems require free energy to carry out cellular functions, and employ various strategies to capture, use, and store free energy. Explain the advantage that the higher energy efficiency per kg of the Krebs cycle provides to you compared to a metabolism based on glycolysis alone. Your explanation should make use of all the following facts:

  • ΔG for glycolysis is -135kJ per mole of glucose
  • ΔG for aerobic respiration is -2880kJ per mole glucose
  • the basal metabolic rate of mammals is often represented as -300kJ/day • m0.75
  • the molar mass of glucose is 180 g/mole

B. Explain the bioenergetic difference between aerobic and anaerobic respiration in terms of the difference between free-energy production and power. Your explanation should make use of all the following facts:

  • power is the rate of free-energy production
  • cancer cells derive most of their free energy from glycolysis
  • enzymes of the citric acid (Kreb’s) cycle form coordinate complexes on the cytoskeleton within the mitochondria

C. The life cycle of the human parasite Trypanosoma brucei is divided between the body of the tsetse fly and the human blood stream. The parasite causes “sleeping sickness” in Sub-Saharan Africa. Within the human bloodstream, the parasite depends on glycolysis, with enzymes compartmentalized in a membrane-bound organelle called the glycosome. In the insect host, the parasite utilizes glycolysis as well as substrate-level and oxidative phosphorylation. Explain the advantage of a life cycle in the human host that employs anaerobic respiration with a rate of free-energy production that is enhanced by compartmentalization in the glycosome and a life cycle in the insect host that is aerobic.

D. Predict the advantages of a biological system that uses both glycolysis and oxidative phosphorylation. Your prediction should make use of all the following facts:

  • signaling can be used to detect low-oxygen environments and to regulate response
  • some cells, such as muscle and blood cells, must function in both low- and high-oxygen environments
  • glycolysis is reversible
  • the citric acid cycle is not reversible
  • thermoregulation is needed for homeostasis
55.

Dinitrophenol (DNP) was used in the manufacture of munitions in World War I. In the 1930s, it was used as a weight loss drug. Use in the U.S. cannot be regulated by the FDA because DNP is considered a dietary supplement. Attempts to ban the drug in the U.K. following the death of four users in 2015 failed in Parliament. DNP is a small molecule that is soluble in the mitochondrial inner membrane. The hydroxyl group reversibly dissociates a proton.

The figure shows an orange matrix outside of a dark orange inner mitochondrial membrane. Inside the inner mitochondrial molecule is a hexagon with alternating double-lined and single-lined sides. The top, lower right, and lower left sides of the hexagon are double lines. The rest are single lines. The rightmost point on the hexagon is connected by a single line to NO2, the  lower left point is connected by a single line to NO2, and the leftmost point is connected to OH. There is a two-way arrow between this molecule and a second hexagonal molecule. This second molecule has alternating double lines on the top left side, the top right side, and the bottom. The rest of the sides are singe lines. The leftmost point has a single line connected to O2N, the top right point is connected by a single line to NO2, and the rightmost point is connected by a single line to O-. After this molecule there is a plus sign followed by an H+. The H+ falls inside the Matrix.
Figure 7.21

A. Predict the effect of DNP on the electrochemical gradient across the inner mitochondrial membrane.

B. Explain how DNP can be used to reduce weight.

C. The effects of DNP can be reversed by administering glucose. However, treatment with a combination of glucose and 2-deoxyglucose, which is an inhibitor of glycolysis, does not reverse the effects of DNP. Explain, in terms of the products of glycolysis, why this reversal of the effects of DNP was unexpected. (Hint: It might be useful to review the reactants and products of glycolysis.)

D. Obesity correlates with an epidemic of other health issues, such as elevated blood pressure, heart disease, and diabetes II. A slow-release form of DNP (CRMP) is patented. With slow-release technology, a drug can be delivered in small doses over time from a pill whose matrix limits solubility. A simple but nonscientific question that can be raised is: Will a slow-release drug retard progress toward behavioral changes that can reduce the magnitude of this epidemic? Scientific questions can be pursued by testing the outcomes predicted by possible answers. Refine this question for discussion in small groups. Be prepared to justify the merits of your question.

56.

As shown in Figure 7.11, cyanide inhibits the electron transport chain by competing with O2 molecules for the cytochrome c oxidase heme group. Carbon monoxide (CO) has a similar effect. Both cyanide and carbon monoxide cause poisoning in victims of smoke inhalation.

A. Predict the effects of these poisons on the following properties of mitochondria just after exposure: the pH of the intermembrane space, the concentration of NADH, and the rate of production of ATP in the matrix. Justify your predictions.

B. Rotenone is a poison that blocks the transfer of electrons from Complex I of the electron transport chain to ubiquinone. Methylene blue is a molecule with many uses involving its reduction-oxidation properties. Recent studies show the effectiveness of methylene blue in increasing the body’s metabolic rate and as a treatment for Alzheimer’s patients. The oxidized form of methylene blue is reduced by NADH, and its reduced form is oxidized by O2. Explain the use of methylene blue as an antidote for rotenone poisoning.

57.

E. coli are enteric (gut-dwelling) facultative anaerobic bacteria. (Facultative anaerobes can grow either with or without free oxygen. Obligatory anaerobes grow only in the absence of free oxygen.) Researchers planned to grow cultures of E. coli under a range of conditions to model the transition from strictly anaerobic to aerobic respiration.

The oxygen content of atmospheres at constant total pressure will be controlled by volumes of nitrogen and oxygen gases. Ratios of volume, r = VO2/VN2 between 0 and 0.25 of shaken growth flasks can be measured in terms of optical density, which is the percent of transmission of light through a sample of the growing E. coli culture. A rule of thumb is that the range of strict anaerobes is when r < 0.01, and the boundary for aerobic respiration is when r = 0.05. A large number of flasks that can be constantly shaken at fixed temperature, and from which samples can be taken without atmospheric contamination, are available for this study.

These results of the experiment will be used to infer growth rates of E. coli along the entire 7.5 m length of the average human intestine (small intestine and large intestine), where the oxygen content varies from atmospheric to anaerobic conditions. The retention time of food in the small intestine, whose average length is 2.5 m, is approximately four hours. The retention time of food over the entire length of the intestine is between 24 and 72 hours.

A. Describe and apply a mathematical model that can be used to represent the variation of oxygen environments of a bacterium that is being transported with the food along the length of the intestine.

B. Design the experimental sampling times in terms of growth intervals of interest in this study: i) the time when the bacteria is passing the small-large intestine boundary; ii) the time when the bacteria reaches the end of the large intestine; and iii) the time when the bacterium reaches facultative anaerobic conditions, r < 0.05.

C. Sketch a graph that predicts the distribution of aerobic, facultative anaerobic and obligatory anaerobic bacteria along the length of the entire intestine based on these parameters. Keep in mind that anaerobes have a lower respiration rate.

58.

White snakeroot is a plant that contains chemicals that deactivate the enzyme lactate dehydrogenase. Humans who consume milk from cows or goats that eat white snakeroot can become ill. Symptoms of milk poisoning include vomiting, abdominal pain, and tremors, which become worse after exercise. Beyond childhood, most people do not express the enzyme lactase that catalyzes the breakdown of lactose into glucose and galactose. Consumption of milk can produce symptoms similar to those of milk poisoning. After a period of consumption of dairy foods, though, prebiotic adaptation (changes in the microbes in the intestine) imparts lactose tolerance. Since dairy foods are a valuable source of calcium, proteins, and vitamin D, considerable research has been conducted to characterize adaptation.

Explain the similarities and differences between the effect of milk poisoning by white snakeroot and lactose intolerance, and the possibility of prebiotic adaptation for each.

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/biology-ap-courses/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/biology-ap-courses/pages/1-introduction
Citation information

© Jul 7, 2023 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.