Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Biology for AP® Courses

Test Prep for AP® Courses

Biology for AP® CoursesTest Prep for AP® Courses

Menu
Table of contents
  1. Preface
  2. The Chemistry of Life
    1. 1 The Study of Life
      1. Introduction
      2. 1.1 The Science of Biology
      3. 1.2 Themes and Concepts of Biology
      4. Key Terms
      5. Chapter Summary
      6. Review Questions
      7. Critical Thinking Questions
      8. Test Prep for AP® Courses
    2. 2 The Chemical Foundation of Life
      1. Introduction
      2. 2.1 Atoms, Isotopes, Ions, and Molecules: The Building Blocks
      3. 2.2 Water
      4. 2.3 Carbon
      5. Key Terms
      6. Chapter Summary
      7. Review Questions
      8. Critical Thinking Questions
      9. Test Prep for AP® Courses
      10. Science Practice Challenge Questions
    3. 3 Biological Macromolecules
      1. Introduction
      2. 3.1 Synthesis of Biological Macromolecules
      3. 3.2 Carbohydrates
      4. 3.3 Lipids
      5. 3.4 Proteins
      6. 3.5 Nucleic Acids
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
      12. Science Practice Challenge Questions
  3. The Cell
    1. 4 Cell Structure
      1. Introduction
      2. 4.1 Studying Cells
      3. 4.2 Prokaryotic Cells
      4. 4.3 Eukaryotic Cells
      5. 4.4 The Endomembrane System and Proteins
      6. 4.5 Cytoskeleton
      7. 4.6 Connections between Cells and Cellular Activities
      8. Key Terms
      9. Chapter Summary
      10. Review Questions
      11. Critical Thinking Questions
      12. Test Prep for AP® Courses
      13. Science Practice Challenge Questions
    2. 5 Structure and Function of Plasma Membranes
      1. Introduction
      2. 5.1 Components and Structure
      3. 5.2 Passive Transport
      4. 5.3 Active Transport
      5. 5.4 Bulk Transport
      6. Key Terms
      7. Chapter Summary
      8. Review Questions
      9. Critical Thinking Questions
      10. Test Prep for AP® Courses
      11. Science Practice Challenge Questions
    3. 6 Metabolism
      1. Introduction
      2. 6.1 Energy and Metabolism
      3. 6.2 Potential, Kinetic, Free, and Activation Energy
      4. 6.3 The Laws of Thermodynamics
      5. 6.4 ATP: Adenosine Triphosphate
      6. 6.5 Enzymes
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
      12. Science Practice Challenge Questions
    4. 7 Cellular Respiration
      1. Introduction
      2. 7.1 Energy in Living Systems
      3. 7.2 Glycolysis
      4. 7.3 Oxidation of Pyruvate and the Citric Acid Cycle
      5. 7.4 Oxidative Phosphorylation
      6. 7.5 Metabolism without Oxygen
      7. 7.6 Connections of Carbohydrate, Protein, and Lipid Metabolic Pathways
      8. 7.7 Regulation of Cellular Respiration
      9. Key Terms
      10. Chapter Summary
      11. Review Questions
      12. Critical Thinking Questions
      13. Test Prep for AP® Courses
      14. Science Practice Challenge Questions
    5. 8 Photosynthesis
      1. Introduction
      2. 8.1 Overview of Photosynthesis
      3. 8.2 The Light-Dependent Reaction of Photosynthesis
      4. 8.3 Using Light to Make Organic Molecules
      5. Key Terms
      6. Chapter Summary
      7. Review Questions
      8. Critical Thinking Questions
      9. Test Prep for AP® Courses
      10. Science Practice Challenge Questions
    6. 9 Cell Communication
      1. Introduction
      2. 9.1 Signaling Molecules and Cellular Receptors
      3. 9.2 Propagation of the Signal
      4. 9.3 Response to the Signal
      5. 9.4 Signaling in Single-Celled Organisms
      6. Key Terms
      7. Chapter Summary
      8. Review Questions
      9. Critical Thinking Questions
      10. Test Prep for AP® Courses
      11. Science Practice Challenge Questions
    7. 10 Cell Reproduction
      1. Introduction
      2. 10.1 Cell Division
      3. 10.2 The Cell Cycle
      4. 10.3 Control of the Cell Cycle
      5. 10.4 Cancer and the Cell Cycle
      6. 10.5 Prokaryotic Cell Division
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
      12. Science Practice Challenge Questions
  4. Genetics
    1. 11 Meiosis and Sexual Reproduction
      1. Introduction
      2. 11.1 The Process of Meiosis
      3. 11.2 Sexual Reproduction
      4. Key Terms
      5. Chapter Summary
      6. Review Questions
      7. Critical Thinking Questions
      8. Test Prep for AP® Courses
      9. Science Practice Challenge Questions
    2. 12 Mendel's Experiments and Heredity
      1. Introduction
      2. 12.1 Mendel’s Experiments and the Laws of Probability
      3. 12.2 Characteristics and Traits
      4. 12.3 Laws of Inheritance
      5. Key Terms
      6. Chapter Summary
      7. Review Questions
      8. Critical Thinking Questions
      9. Test Prep for AP® Courses
      10. Science Practice Challenge Questions
    3. 13 Modern Understandings of Inheritance
      1. Introduction
      2. 13.1 Chromosomal Theory and Genetic Linkages
      3. 13.2 Chromosomal Basis of Inherited Disorders
      4. Key Terms
      5. Chapter Summary
      6. Review Questions
      7. Critical Thinking Questions
      8. Test Prep for AP® Courses
      9. Science Practice Challenge Questions
    4. 14 DNA Structure and Function
      1. Introduction
      2. 14.1 Historical Basis of Modern Understanding
      3. 14.2 DNA Structure and Sequencing
      4. 14.3 Basics of DNA Replication
      5. 14.4 DNA Replication in Prokaryotes
      6. 14.5 DNA Replication in Eukaryotes
      7. 14.6 DNA Repair
      8. Key Terms
      9. Chapter Summary
      10. Review Questions
      11. Critical Thinking Questions
      12. Test Prep for AP® Courses
      13. Science Practice Challenge Questions
    5. 15 Genes and Proteins
      1. Introduction
      2. 15.1 The Genetic Code
      3. 15.2 Prokaryotic Transcription
      4. 15.3 Eukaryotic Transcription
      5. 15.4 RNA Processing in Eukaryotes
      6. 15.5 Ribosomes and Protein Synthesis
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
      12. Science Practice Challenge Questions
    6. 16 Gene Regulation
      1. Introduction
      2. 16.1 Regulation of Gene Expression
      3. 16.2 Prokaryotic Gene Regulation
      4. 16.3 Eukaryotic Epigenetic Gene Regulation
      5. 16.4 Eukaryotic Transcriptional Gene Regulation
      6. 16.5 Eukaryotic Post-transcriptional Gene Regulation
      7. 16.6 Eukaryotic Translational and Post-translational Gene Regulation
      8. 16.7 Cancer and Gene Regulation
      9. Key Terms
      10. Chapter Summary
      11. Review Questions
      12. Critical Thinking Questions
      13. Test Prep for AP® Courses
      14. Science Practice Challenge Questions
    7. 17 Biotechnology and Genomics
      1. Introduction
      2. 17.1 Biotechnology
      3. 17.2 Mapping Genomes
      4. 17.3 Whole-Genome Sequencing
      5. 17.4 Applying Genomics
      6. 17.5 Genomics and Proteomics
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
      12. Science Practice Challenge Questions
  5. Evolutionary Processes
    1. 18 Evolution and Origin of Species
      1. Introduction
      2. 18.1 Understanding Evolution
      3. 18.2 Formation of New Species
      4. 18.3 Reconnection and Rates of Speciation
      5. Key Terms
      6. Chapter Summary
      7. Review Questions
      8. Critical Thinking Questions
      9. Test Prep for AP® Courses
      10. Science Practice Challenge Questions
    2. 19 The Evolution of Populations
      1. Introduction
      2. 19.1 Population Evolution
      3. 19.2 Population Genetics
      4. 19.3 Adaptive Evolution
      5. Key Terms
      6. Chapter Summary
      7. Review Questions
      8. Critical Thinking Questions
      9. Test Prep for AP® Courses
      10. Science Practice Challenge Questions
    3. 20 Phylogenies and the History of Life
      1. Introduction
      2. 20.1 Organizing Life on Earth
      3. 20.2 Determining Evolutionary Relationships
      4. 20.3 Perspectives on the Phylogenetic Tree
      5. Key Terms
      6. Chapter Summary
      7. Review Questions
      8. Critical Thinking Questions
      9. Test Prep for AP® Courses
      10. Science Practice Challenge Questions
  6. Biological Diversity
    1. 21 Viruses
      1. Introduction
      2. 21.1 Viral Evolution, Morphology, and Classification
      3. 21.2 Virus Infection and Hosts
      4. 21.3 Prevention and Treatment of Viral Infections
      5. 21.4 Other Acellular Entities: Prions and Viroids
      6. Key Terms
      7. Chapter Summary
      8. Review Questions
      9. Critical Thinking Questions
      10. Test Prep for AP® Courses
      11. Science Practice Challenge Questions
    2. 22 Prokaryotes: Bacteria and Archaea
      1. Introduction
      2. 22.1 Prokaryotic Diversity
      3. 22.2 Structure of Prokaryotes
      4. 22.3 Prokaryotic Metabolism
      5. 22.4 Bacterial Diseases in Humans
      6. 22.5 Beneficial Prokaryotes
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
      12. Science Practice Challenge Questions
  7. Plant Structure and Function
    1. 23 Plant Form and Physiology
      1. Introduction
      2. 23.1 The Plant Body
      3. 23.2 Stems
      4. 23.3 Roots
      5. 23.4 Leaves
      6. 23.5 Transport of Water and Solutes in Plants
      7. 23.6 Plant Sensory Systems and Responses
      8. Key Terms
      9. Chapter Summary
      10. Review Questions
      11. Critical Thinking Questions
      12. Test Prep for AP® Courses
      13. Science Practice Challenge Questions
  8. Animal Structure and Function
    1. 24 The Animal Body: Basic Form and Function
      1. Introduction
      2. 24.1 Animal Form and Function
      3. 24.2 Animal Primary Tissues
      4. 24.3 Homeostasis
      5. Key Terms
      6. Chapter Summary
      7. Review Questions
      8. Critical Thinking Questions
      9. Test Prep for AP® Courses
    2. 25 Animal Nutrition and the Digestive System
      1. Introduction
      2. 25.1 Digestive Systems
      3. 25.2 Nutrition and Energy Production
      4. 25.3 Digestive System Processes
      5. 25.4 Digestive System Regulation
      6. Key Terms
      7. Chapter Summary
      8. Review Questions
      9. Critical Thinking Questions
      10. Test Prep for AP® Courses
      11. Science Practice Challenge Questions
    3. 26 The Nervous System
      1. Introduction
      2. 26.1 Neurons and Glial Cells
      3. 26.2 How Neurons Communicate
      4. 26.3 The Central Nervous System
      5. 26.4 The Peripheral Nervous System
      6. 26.5 Nervous System Disorders
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
      12. Science Practice Challenge Questions
    4. 27 Sensory Systems
      1. Introduction
      2. 27.1 Sensory Processes
      3. 27.2 Somatosensation
      4. 27.3 Taste and Smell
      5. 27.4 Hearing and Vestibular Sensation
      6. 27.5 Vision
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Science Practice Challenge Questions
    5. 28 The Endocrine System
      1. Introduction
      2. 28.1 Types of Hormones
      3. 28.2 How Hormones Work
      4. 28.3 Regulation of Body Processes
      5. 28.4 Regulation of Hormone Production
      6. 28.5 Endocrine Glands
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
      12. Science Practice Challenge Questions
    6. 29 The Musculoskeletal System
      1. Introduction
      2. 29.1 Types of Skeletal Systems
      3. 29.2 Bone
      4. 29.3 Joints and Skeletal Movement
      5. 29.4 Muscle Contraction and Locomotion
      6. Key Terms
      7. Chapter Summary
      8. Review Questions
      9. Critical Thinking Questions
      10. Science Practice Challenge Questions
    7. 30 The Respiratory System
      1. Introduction
      2. 30.1 Systems of Gas Exchange
      3. 30.2 Gas Exchange across Respiratory Surfaces
      4. 30.3 Breathing
      5. 30.4 Transport of Gases in Human Bodily Fluids
      6. Key Terms
      7. Chapter Summary
      8. Review Questions
      9. Critical Thinking Questions
      10. Test Prep for AP® Courses
      11. Science Practice Challenge Questions
    8. 31 The Circulatory System
      1. Introduction
      2. 31.1 Overview of the Circulatory System
      3. 31.2 Components of the Blood
      4. 31.3 Mammalian Heart and Blood Vessels
      5. 31.4 Blood Flow and Blood Pressure Regulation
      6. Key Terms
      7. Chapter Summary
      8. Review Questions
      9. Critical Thinking Questions
      10. Test Prep for AP® Courses
      11. Science Practice Challenge Questions
    9. 32 Osmotic Regulation and Excretion
      1. Introduction
      2. 32.1 Osmoregulation and Osmotic Balance
      3. 32.2 The Kidneys and Osmoregulatory Organs
      4. 32.3 Excretion Systems
      5. 32.4 Nitrogenous Wastes
      6. 32.5 Hormonal Control of Osmoregulatory Functions
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
    10. 33 The Immune System
      1. Introduction
      2. 33.1 Innate Immune Response
      3. 33.2 Adaptive Immune Response
      4. 33.3 Antibodies
      5. 33.4 Disruptions in the Immune System
      6. Key Terms
      7. Chapter Summary
      8. Review Questions
      9. Critical Thinking Questions
      10. Test Prep for AP® Courses
      11. Science Practice Challenge Questions
    11. 34 Animal Reproduction and Development
      1. Introduction
      2. 34.1 Reproduction Methods
      3. 34.2 Fertilization
      4. 34.3 Human Reproductive Anatomy and Gametogenesis
      5. 34.4 Hormonal Control of Human Reproduction
      6. 34.5 Fertilization and Early Embryonic Development
      7. 34.6 Organogenesis and Vertebrate Formation
      8. 34.7 Human Pregnancy and Birth
      9. Key Terms
      10. Chapter Summary
      11. Review Questions
      12. Critical Thinking Questions
      13. Test Prep for AP® Courses
      14. Science Practice Challenge Questions
  9. Ecology
    1. 35 Ecology and the Biosphere
      1. Introduction
      2. 35.1 The Scope of Ecology
      3. 35.2 Biogeography
      4. 35.3 Terrestrial Biomes
      5. 35.4 Aquatic Biomes
      6. 35.5 Climate and the Effects of Global Climate Change
      7. Key Terms
      8. Chapter Summary
      9. Review Questions
      10. Critical Thinking Questions
      11. Test Prep for AP® Courses
      12. Science Practice Challenge Questions
    2. 36 Population and Community Ecology
      1. Introduction
      2. 36.1 Population Demography
      3. 36.2 Life Histories and Natural Selection
      4. 36.3 Environmental Limits to Population Growth
      5. 36.4 Population Dynamics and Regulation
      6. 36.5 Human Population Growth
      7. 36.6 Community Ecology
      8. 36.7 Behavioral Biology: Proximate and Ultimate Causes of Behavior
      9. Key Terms
      10. Chapter Summary
      11. Review Questions
      12. Critical Thinking Questions
      13. Test Prep for AP® Courses
      14. Science Practice Challenge Questions
    3. 37 Ecosystems
      1. Introduction
      2. 37.1 Ecology for Ecosystems
      3. 37.2 Energy Flow through Ecosystems
      4. 37.3 Biogeochemical Cycles
      5. Key Terms
      6. Chapter Summary
      7. Review Questions
      8. Critical Thinking Questions
      9. Test Prep for AP® Courses
      10. Science Practice Challenge Questions
    4. 38 Conservation Biology and Biodiversity
      1. Introduction
      2. 38.1 The Biodiversity Crisis
      3. 38.2 The Importance of Biodiversity to Human Life
      4. 38.3 Threats to Biodiversity
      5. 38.4 Preserving Biodiversity
      6. Key Terms
      7. Chapter Summary
      8. Review Questions
      9. Critical Thinking Questions
      10. Test Prep for AP® Courses
  10. A | The Periodic Table of Elements
  11. B | Geological Time
  12. C | Measurements and the Metric System
  13. Index
29.

A scientist is studying the genetics of a population of plants that she suspects is undergoing natural selection. After examining samples of the population’s DNA over several years, she finds the following data:

Year Allele A Frequency Allele B Frequency
1 0.80 0.2
2 0.72 0.28
3 0.66 0.34
4 0.52 0.48
5 0.45 0.55
6 0.39 0.61

Does this provide evidence of natural selection in this population? Why or why not?

  1. No, because the genotype frequencies, not allele frequencies, have to change for evolution to occur.
  2. No, because the allele frequencies are changing randomly, suggesting that genetic drift is occurring, not natural selection.
  3. Yes, because it shows that the previously favorable or neutral allele A is now being selected against in favor of allele B.
  4. Yes, because it is showing that the frequency of both alleles are changing over time.
30 .

A scientist is studying two large populations of deer that are centralized in nearby forests. She takes blood samples from all of the deer in each population and records in how many individuals she finds allele A. She then computes the frequency of the alleles in each population. The allele frequencies observed over five years are shown in the tables provided. Evaluate the data to answer the following: Which forms of evolution are most likely occurring in populations 1 and 2? Provide evidence to support your answer.

Population 1
YearAllele A FrequencyAllele B Frequency
10.690.31
20.710.29
30.730.27
40.750.25
50.810.19
60.840.16
Table 19.3
Population 2
YearAllele A FrequencyAllele B Frequency
10.001.00
20.001.00
30.100.90
40.160.84
50.210.79
60.250.75
Table 19.4
  1. In population 1, genetic drift is likely occurring, causing allele A to become more prevalent than allele B. In population 2, a mutation apparently occurred, introducing allele A to population 2. Allele A also appears to be increasing due to genetic drift in population 2.
  2. In population 1, natural selection is likely occurring, with allele A being favored over allele B. In population 2, gene flow apparently occurred, allowing allele A to become established in population 2. Allele A also appears to be favored by selection in population 2.
  3. In population 1, gene flow apparently occurred, allowing allele B to become established in population 1. Allele A also appears to be favored by selection in population 1. In population 2, genetic drift is likely occurring, causing allele A to become more prevalent than allele B.
  4. In population 1, mutation apparently occurred, introducing allele B to population 1. Allele A also appears to be increasing due to genetic drift in population 1. In population 2, natural selection is likely occurring, with allele A being favored over allele B.
31.

A land manager mows a section of annual grass. Over the years, he recorded the date of flowering from the mown field as well as a similar grass field that was not mown. What is the most likely explanation for this trend?

Year Mowed field flowering date Unmowed field flowering date
2010 7/29 7/28
2011 7/20 7/26
2012 7/13 8/1
2013 7/8 7/29
2014 7/1 8/2
2015 6/29 7/26
  1. The grass population is adapting to the mowing, so it can flower for longer before being mowed.
  2. Mowing stabilizes the flowering time, which follows a steady trend in the mowed field but not in the unmowed field.
  3. The mowing is preventing the grass from reproducing, causing the mowed field to adapt by flowering earlier.
  4. The grass typically flowers earlier and earlier every year as it becomes older with each passing year.
32.

A scientist observed two populations of insects for 10 years. They took data on the length, in mm, of the insect’s mouthparts. Their data is shown in the graphs below. How is this population evolving and what agent of evolution is most likely at work?

Two graphs are shown with frequency on the y-axis and mouthpart length, in millimeters, on the x-axis. In year 1, the mouthpart length plot showed 2 peaks, separated by an area of lower mouthpart length, between the two peaks. This valley is located near the center of the x-axis. In year 10, the mouthpart length showed a bell-shaped curve that peaked at the middle mouthpart length.
  1. inbreeding, because the gene distributions are becoming less similar among the population
  2. genetic drift, as the distribution of traits has become more random
  3. gene flow, as the population has likely gained new mouthpart traits through immigration
  4. natural selection, as insects that have mid-sized mouthparts are being favored
33.

Researchers believe that in a fish species, individuals with the recessive genotype aa are predisposed to disease. Homozygous dominant (AA) individuals and heterozygous (Aa) individuals are not believed to be susceptible to this disease. A pond was stocked with 100 fish of the AA genotype and 100 fish of the aa phenotype, and the fish were allowed to breed. In the next generation, 35 percent of the fish had the dominant (AA) phenotype. What does this result indicate?

  1. The homozygous dominant phenotype is higher than expected, indicating that evolution has occurred.
  2. The homozygous dominant phenotype is lower than expected, indicating that evolution has occurred.
  3. The homozygous dominant phenotype is higher than expected, indicating that evolution has not occurred.
  4. The homozygous dominant phenotype is lower than expected, indicating that evolution has not occurred.
34 .
Heterozygote advantage is a condition in which heterozygotes in a population are favored by natural selection. Predict how the value of 2pq would likely change if a population was undergoing heterozygote advantage.
  1. It would remain in equilibrium because the values of p and q would remain the same.
  2. It would remain in equilibrium because the value of 2pq would remain the same.
  3. It would not remain in equilibrium because the value of 2pq would likely increase.
  4. It would not remain in equilibrium because the value of 2pq would likely decrease.
35.

The graph below shows the change in gene frequency of the two alleles of a gene: A and a. The population being studies has no emigration or immigration. Which type of evolution is likely occurring here and is the allele selected for, neutral, or selected against by natural selection?

.
  1. non-random mating; both alleles are favored
  2. gene flow; allele A is favored
  3. genetic drift; both alleles are neutral
  4. natural selection; allele a is not favored
36.

The graph below shows the change in gene frequency of the two alleles: A and B. These alleles are located on separate genes that do not influence each other in any way. The population being studied has no emigration or immigration. Which type of evolution is likely occurring here, if at all? Explain how you know.

.
  1. no multiple choice available
  2. no multiple choice available
37 .
A bar graph is shown with frequency on the y-axis, ranging from 0 to 1, by tenths. The x-axis shows two genotypes. The genotype AA has a frequency of 0.7. The genotype of aa has a frequency of 0.3.

The graph pictured shows the current frequencies of two genotypes of the same gene: AA and aa. Analyze the graph to predict which of the following would most likely happen to the frequencies of the two genotypes if heterozygous individuals were favored by natural selection.

  1. Both AA and aa will drop in frequency by the same amount.
  2. Both AA and aa will drop in frequency, but aa will drop more.
  3. AA will increase in frequency and aa will drop in frequency.
  4. aa will increase in frequency and AA will drop in frequency.
38.

The diagram below shows the frequency of alleles on two species of wind-pollinated plants, as well as the prevailing wind direction. These frequencies have been fairly stable for around 10 years. However, climate change has created a new prevailing wind direction, as shown in the diagram. How will the two populations likely evolve in the future?

.
  1. natural selection will cause the frequency of B to increase in population 1
  2. gene flow will cause the frequencies of A and B to drop in population 3
  3. genetic drift will cause the frequencies of A and C to increase in population 1 and 2
  4. inbreeding will reduce the frequency of allele B in population 2 and 3
39 .

The diagram below shows two populations of organisms that have been long-separated by a river which prevents interbreeding. The two populations differ in coloration, as shown in the diagram. Recent human activity has caused the river to dry, however, resulting in the two populations shown in the lower diagram. What is the most likely explanation for this change?

Two diagrams are shown, one representing 2005 and the other representing 2015. Both show a river separating population 1 and population 2. Both populations contain a mix of red, blue and yellow dots. In 2005, population 1 contains 8 red dots, 7 blue dots, and 2 yellow dots. In 2005, population 2 contains 9 red dots, 0 blue dots, and 8 yellow dots. In 2015, population 1 contains 8 red dots, 7 blue dots, and 2 yellow dots. In 2015, population 2 contains 10 red dots, 6 blue dots, and 2 yellow dots.

  1. an increase in gene flow between the two populations
  2. a decrease in gene flow between the two populations
  3. an increase in non-random mating between the two populations
  4. a decrease in non-random mating between the two populations
40 .
(credit: modification of work from APS Press)

Triadimenol is a fungicide used in agriculture. The graph shows the resistance of a type of fungus to this chemical over time. Each line in the graph represents data from a different year.

Describe the pattern seen here.

  1. The fungus population did not change over time.
  2. The fungus developed resistance to the fungicide over time due to directional selection.
  3. The fungus becme more susceptible to the fungicide over time due to stabilizing selection.
  4. The fungus became more susceptible to the fungicide over time due to unknown reasons.
Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/biology-ap-courses/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/biology-ap-courses/pages/1-introduction
Citation information

© Jul 7, 2023 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.