Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Biology for AP® Courses

Science Practice Challenge Questions

Biology for AP® CoursesScience Practice Challenge Questions

30.

Meiosis involves processes that are common to all eukaryotes, involving the same or similar genes. Evaluate the support for the theory of evolution provided by this evidence and, additionally, by the absence of any alternative process.

31.

Meiotic phases of yeast cells were observed microscopically with fluorescent markers (Nachman et al., Cell, 131(3), 2007) to determine the time intervals of meiosis I and meiosis II. The data are displayed in the following figure:

The figure is a bar graph titled Time intervals of Meiosis I and Meiosis II in Yeast Cells. The x-axis is labelled time in hours. The y-axis is labelled Number of yeast cells entering meiotic phase.  The x-axis has tick marks for 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20. The y-axis has tick marks for 0.0, 0.1, 0.3, 0.4, 0.5, 0.6. 0.7. A key on the bottom states that red represents meiosis I and purple represents meiosis II. There are four purple bars . The first three purple bars are between 0 and 2 on the x-axis. The fourth purple bar is between 2 and 4 on the x-axis. The first purple bar reaches 0.7 on the y-axis, the second reaches 0.2 on the y axis, and the third and the fourth purple bars fall between 0.0 and 0.1.  There are 26 red bars that fall between 7 and 19 on the x axis. There is some variance in height for the red bars, with all the bars falling between 0.0 and 0.1 on the y axis.
Figure 11.11

The duration of meiosis I is measured relative to the transfer of spores to the growth medium. The duration of meiosis II is measured relative to the emergence from meiosis I. On the y-axis, the fraction of cells observed to enter each phase are shown, where the sampling has been made in increments of 0.5 hours.

  1. Qualitatively compare the mean and standard deviation for these two distributions.
  2. The gene Ime1 is transcribed at the start of meiosis I in response to nitrogen starvation. This activates Ime2 that interacts with Ime1. If, during meiosis I, the cells are supplied with nitrogen, meiosis is halted. Based on these data, justify the claim that this interaction provides a negative feedback loop.
  3. Explain the advantage provided to the population and the risk to individual cells of the timing of meiosis displayed in the graph above.
32.

Construct an explanation as to how DNA is transmitted to the next generation via meiosis followed by fertilization.

33.

In eukaryotes, sexual reproduction involves the recombination of heritable information from both parents via meiosis followed by fertilization. Meiosis reduces the number of chromosomes from diploid (2n) to haploid (1n) during the production of gametes. Meiosis begins with the duplication of DNA, producing four strands of DNA in two pairs of homologous chromosomes: 2(2n) becomes 4(n), that is, four haploid cells, where n is the number of strands of DNA in a chromosome.

A. Construct an explanation of the importance of random, independent assortment to genetic variation by creating a diagram that represents homologous chromosomes during prophase I without crossover and the possible arrangements of these chromosomes during metaphase I:

  • without recombination during prophase I
  • with recombination involving two chiasmata

B. An alternative would be to bypass the initial duplication of DNA: 2n becomes 2(n), that is, a diploid cell becomes two haploid cells. Predict the effect that this would have on genetic variation.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/biology-ap-courses/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/biology-ap-courses/pages/1-introduction
Citation information

© Sep 19, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.