Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Biology 2e

Chapter Summary

Biology 2eChapter Summary

26.1 Evolution of Seed Plants

Seed plants appeared about 350 million years ago, during the Carboniferous period. Two major innovations were seeds and pollen. Seeds protect the embryo from desiccation and provide it with a store of nutrients to support the early growth of the sporophyte. Seeds are also equipped to delay germination until growth conditions are optimal. Pollen allows seed plants to reproduce in the absence of water. The gametophytes of seed plants shrank, while the sporophytes became prominent structures and the diploid stage became the longest phase of the life cycle.

In the gymnosperms, which appeared during the drier Permian period and became the dominant group during the Triassic, pollen was dispersed by wind, and their naked seeds developed in the sporophylls of a strobilus. Angiosperms bear both flowers and fruit. Flowers expand the possibilities for pollination, especially by insects, who have coevolved with the flowering plants. Fruits offer additional protection to the embryo during its development, and also assist with seed dispersal. Angiosperms appeared during the Mesozoic era and have become the dominant plant life in terrestrial habitats.

26.2 Gymnosperms

Gymnosperms are heterosporous seed plants that produce naked seeds. They appeared in the Paleozoic period and were the dominant plant life during the Mesozoic. Modern-day gymnosperms belong to four phyla. The largest phylum, Coniferophyta, is represented by conifers, the predominant plants at high altitude and latitude. Cycads (phylum Cycadophyta) resemble palm trees and grow in tropical climates. Ginkgophyta is represented today by a single species, Ginkgo biloba. The last phylum, Gnetophyta, is a diverse group of plants that produce vessel elements in their wood.

26.3 Angiosperms

Angiosperms are the dominant form of plant life in most terrestrial ecosystems, comprising about 90 percent of all plant species. Most crops and ornamental plants are angiosperms. Their success comes from two innovative structures that protect reproduction from variability in the environment: the flower and the fruit. Flowers were derived from modified leaves; their color and fragrance encourages species-specific pollination. The main parts of a flower are the sepals and petals, which protect the reproductive parts: the stamens and the carpels. The stamens produce the male gametes in pollen grains. The carpels contain the female gametes (the eggs inside the ovules), which are within the ovary of a carpel. The walls of the ovary thicken after fertilization, ripening into fruit that ensures dispersal by wind, water, or animals.

The angiosperm life cycle is dominated by the sporophyte stage. Double fertilization is an event unique to angiosperms. One sperm in the pollen fertilizes the egg, forming a diploid zygote, while the other combines with the two polar nuclei, forming a triploid cell that develops into a food storage tissue called the endosperm. Flowering plants are divided into two main groups, the monocots and eudicots, according to the number of cotyledons in the seedlings. Basal angiosperms belong to an older lineage than monocots and eudicots.

26.4 The Role of Seed Plants

Angiosperm diversity is due in part to multiple interactions with animals. Herbivory has favored the development of defense mechanisms in plants, and avoidance of those defense mechanisms in animals. Conversely, seed dispersal can be aided by animals that eat plant fruits. Pollination (the transfer of pollen to a carpel) is mainly carried out by wind and animals, and angiosperm fruits and seeds have evolved numerous adaptations to capture the wind or attract specific classes of animals.

Plants play a key role in ecosystems. They are a source of food and medicinal compounds, and provide raw materials for many industries. Rapid deforestation and industrialization, however, threaten plant biodiversity. In turn, this threatens the ecosystem.

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/biology-2e/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/biology-2e/pages/1-introduction
Citation information

© Jan 8, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.