Skip to Content
OpenStax Logo
Anatomy and Physiology

4.3 Connective Tissue Supports and Protects

Anatomy and Physiology4.3 Connective Tissue Supports and Protects
Buy book
  1. Preface
  2. Unit 1: Levels of Organization
    1. 1 An Introduction to the Human Body
      1. Introduction
      2. 1.1 Overview of Anatomy and Physiology
      3. 1.2 Structural Organization of the Human Body
      4. 1.3 Functions of Human Life
      5. 1.4 Requirements for Human Life
      6. 1.5 Homeostasis
      7. 1.6 Anatomical Terminology
      8. 1.7 Medical Imaging
      9. Key Terms
      10. Chapter Review
      11. Interactive Link Questions
      12. Review Questions
      13. Critical Thinking Questions
    2. 2 The Chemical Level of Organization
      1. Introduction
      2. 2.1 Elements and Atoms: The Building Blocks of Matter
      3. 2.2 Chemical Bonds
      4. 2.3 Chemical Reactions
      5. 2.4 Inorganic Compounds Essential to Human Functioning
      6. 2.5 Organic Compounds Essential to Human Functioning
      7. Key Terms
      8. Chapter Review
      9. Interactive Link Questions
      10. Review Questions
      11. Critical Thinking Questions
    3. 3 The Cellular Level of Organization
      1. Introduction
      2. 3.1 The Cell Membrane
      3. 3.2 The Cytoplasm and Cellular Organelles
      4. 3.3 The Nucleus and DNA Replication
      5. 3.4 Protein Synthesis
      6. 3.5 Cell Growth and Division
      7. 3.6 Cellular Differentiation
      8. Key Terms
      9. Chapter Review
      10. Interactive Link Questions
      11. Review Questions
      12. Critical Thinking Questions
    4. 4 The Tissue Level of Organization
      1. Introduction
      2. 4.1 Types of Tissues
      3. 4.2 Epithelial Tissue
      4. 4.3 Connective Tissue Supports and Protects
      5. 4.4 Muscle Tissue and Motion
      6. 4.5 Nervous Tissue Mediates Perception and Response
      7. 4.6 Tissue Injury and Aging
      8. Key Terms
      9. Chapter Review
      10. Interactive Link Questions
      11. Review Questions
      12. Critical Thinking Questions
  3. Unit 2: Support and Movement
    1. 5 The Integumentary System
      1. Introduction
      2. 5.1 Layers of the Skin
      3. 5.2 Accessory Structures of the Skin
      4. 5.3 Functions of the Integumentary System
      5. 5.4 Diseases, Disorders, and Injuries of the Integumentary System
      6. Key Terms
      7. Chapter Review
      8. Interactive Link Questions
      9. Review Questions
      10. Critical Thinking Questions
    2. 6 Bone Tissue and the Skeletal System
      1. Introduction
      2. 6.1 The Functions of the Skeletal System
      3. 6.2 Bone Classification
      4. 6.3 Bone Structure
      5. 6.4 Bone Formation and Development
      6. 6.5 Fractures: Bone Repair
      7. 6.6 Exercise, Nutrition, Hormones, and Bone Tissue
      8. 6.7 Calcium Homeostasis: Interactions of the Skeletal System and Other Organ Systems
      9. Key Terms
      10. Chapter Review
      11. Review Questions
      12. Critical Thinking Questions
    3. 7 Axial Skeleton
      1. Introduction
      2. 7.1 Divisions of the Skeletal System
      3. 7.2 The Skull
      4. 7.3 The Vertebral Column
      5. 7.4 The Thoracic Cage
      6. 7.5 Embryonic Development of the Axial Skeleton
      7. Key Terms
      8. Chapter Review
      9. Interactive Link Questions
      10. Review Questions
      11. Critical Thinking Questions
    4. 8 The Appendicular Skeleton
      1. Introduction
      2. 8.1 The Pectoral Girdle
      3. 8.2 Bones of the Upper Limb
      4. 8.3 The Pelvic Girdle and Pelvis
      5. 8.4 Bones of the Lower Limb
      6. 8.5 Development of the Appendicular Skeleton
      7. Key Terms
      8. Chapter Review
      9. Interactive Link Questions
      10. Review Questions
      11. Critical Thinking Questions
    5. 9 Joints
      1. Introduction
      2. 9.1 Classification of Joints
      3. 9.2 Fibrous Joints
      4. 9.3 Cartilaginous Joints
      5. 9.4 Synovial Joints
      6. 9.5 Types of Body Movements
      7. 9.6 Anatomy of Selected Synovial Joints
      8. 9.7 Development of Joints
      9. Key Terms
      10. Chapter Review
      11. Interactive Link Questions
      12. Review Questions
      13. Critical Thinking Questions
    6. 10 Muscle Tissue
      1. Introduction
      2. 10.1 Overview of Muscle Tissues
      3. 10.2 Skeletal Muscle
      4. 10.3 Muscle Fiber Contraction and Relaxation
      5. 10.4 Nervous System Control of Muscle Tension
      6. 10.5 Types of Muscle Fibers
      7. 10.6 Exercise and Muscle Performance
      8. 10.7 Cardiac Muscle Tissue
      9. 10.8 Smooth Muscle
      10. 10.9 Development and Regeneration of Muscle Tissue
      11. Key Terms
      12. Chapter Review
      13. Interactive Link Questions
      14. Review Questions
      15. Critical Thinking Questions
    7. 11 The Muscular System
      1. Introduction
      2. 11.1 Interactions of Skeletal Muscles, Their Fascicle Arrangement, and Their Lever Systems
      3. 11.2 Naming Skeletal Muscles
      4. 11.3 Axial Muscles of the Head, Neck, and Back
      5. 11.4 Axial Muscles of the Abdominal Wall, and Thorax
      6. 11.5 Muscles of the Pectoral Girdle and Upper Limbs
      7. 11.6 Appendicular Muscles of the Pelvic Girdle and Lower Limbs
      8. Key Terms
      9. Chapter Review
      10. Review Questions
      11. Critical Thinking Questions
  4. Unit 3: Regulation, Integration, and Control
    1. 12 The Nervous System and Nervous Tissue
      1. Introduction
      2. 12.1 Basic Structure and Function of the Nervous System
      3. 12.2 Nervous Tissue
      4. 12.3 The Function of Nervous Tissue
      5. 12.4 The Action Potential
      6. 12.5 Communication Between Neurons
      7. Key Terms
      8. Chapter Review
      9. Interactive Link Questions
      10. Review Questions
      11. Critical Thinking Questions
    2. 13 Anatomy of the Nervous System
      1. Introduction
      2. 13.1 The Embryologic Perspective
      3. 13.2 The Central Nervous System
      4. 13.3 Circulation and the Central Nervous System
      5. 13.4 The Peripheral Nervous System
      6. Key Terms
      7. Chapter Review
      8. Interactive Link Questions
      9. Review Questions
      10. Critical Thinking Questions
    3. 14 The Somatic Nervous System
      1. Introduction
      2. 14.1 Sensory Perception
      3. 14.2 Central Processing
      4. 14.3 Motor Responses
      5. Key Terms
      6. Chapter Review
      7. Interactive Link Questions
      8. Review Questions
      9. Critical Thinking Questions
    4. 15 The Autonomic Nervous System
      1. Introduction
      2. 15.1 Divisions of the Autonomic Nervous System
      3. 15.2 Autonomic Reflexes and Homeostasis
      4. 15.3 Central Control
      5. 15.4 Drugs that Affect the Autonomic System
      6. Key Terms
      7. Chapter Review
      8. Interactive Link Questions
      9. Review Questions
      10. Critical Thinking Questions
    5. 16 The Neurological Exam
      1. Introduction
      2. 16.1 Overview of the Neurological Exam
      3. 16.2 The Mental Status Exam
      4. 16.3 The Cranial Nerve Exam
      5. 16.4 The Sensory and Motor Exams
      6. 16.5 The Coordination and Gait Exams
      7. Key Terms
      8. Chapter Review
      9. Interactive Link Questions
      10. Review Questions
      11. Critical Thinking Questions
    6. 17 The Endocrine System
      1. Introduction
      2. 17.1 An Overview of the Endocrine System
      3. 17.2 Hormones
      4. 17.3 The Pituitary Gland and Hypothalamus
      5. 17.4 The Thyroid Gland
      6. 17.5 The Parathyroid Glands
      7. 17.6 The Adrenal Glands
      8. 17.7 The Pineal Gland
      9. 17.8 Gonadal and Placental Hormones
      10. 17.9 The Endocrine Pancreas
      11. 17.10 Organs with Secondary Endocrine Functions
      12. 17.11 Development and Aging of the Endocrine System
      13. Key Terms
      14. Chapter Review
      15. Interactive Link Questions
      16. Review Questions
      17. Critical Thinking Questions
  5. Unit 4: Fluids and Transport
    1. 18 The Cardiovascular System: Blood
      1. Introduction
      2. 18.1 An Overview of Blood
      3. 18.2 Production of the Formed Elements
      4. 18.3 Erythrocytes
      5. 18.4 Leukocytes and Platelets
      6. 18.5 Hemostasis
      7. 18.6 Blood Typing
      8. Key Terms
      9. Chapter Review
      10. Interactive Link Questions
      11. Review Questions
      12. Critical Thinking Questions
    2. 19 The Cardiovascular System: The Heart
      1. Introduction
      2. 19.1 Heart Anatomy
      3. 19.2 Cardiac Muscle and Electrical Activity
      4. 19.3 Cardiac Cycle
      5. 19.4 Cardiac Physiology
      6. 19.5 Development of the Heart
      7. Key Terms
      8. Chapter Review
      9. Interactive Link Questions
      10. Review Questions
      11. Critical Thinking Questions
    3. 20 The Cardiovascular System: Blood Vessels and Circulation
      1. Introduction
      2. 20.1 Structure and Function of Blood Vessels
      3. 20.2 Blood Flow, Blood Pressure, and Resistance
      4. 20.3 Capillary Exchange
      5. 20.4 Homeostatic Regulation of the Vascular System
      6. 20.5 Circulatory Pathways
      7. 20.6 Development of Blood Vessels and Fetal Circulation
      8. Key Terms
      9. Chapter Review
      10. Interactive Link Questions
      11. Review Questions
      12. Critical Thinking Questions
    4. 21 The Lymphatic and Immune System
      1. Introduction
      2. 21.1 Anatomy of the Lymphatic and Immune Systems
      3. 21.2 Barrier Defenses and the Innate Immune Response
      4. 21.3 The Adaptive Immune Response: T lymphocytes and Their Functional Types
      5. 21.4 The Adaptive Immune Response: B-lymphocytes and Antibodies
      6. 21.5 The Immune Response against Pathogens
      7. 21.6 Diseases Associated with Depressed or Overactive Immune Responses
      8. 21.7 Transplantation and Cancer Immunology
      9. Key Terms
      10. Chapter Review
      11. Interactive Link Questions
      12. Review Questions
      13. Critical Thinking Questions
  6. Unit 5: Energy, Maintenance, and Environmental Exchange
    1. 22 The Respiratory System
      1. Introduction
      2. 22.1 Organs and Structures of the Respiratory System
      3. 22.2 The Lungs
      4. 22.3 The Process of Breathing
      5. 22.4 Gas Exchange
      6. 22.5 Transport of Gases
      7. 22.6 Modifications in Respiratory Functions
      8. 22.7 Embryonic Development of the Respiratory System
      9. Key Terms
      10. Chapter Review
      11. Interactive Link Questions
      12. Review Questions
      13. Critical Thinking Questions
    2. 23 The Digestive System
      1. Introduction
      2. 23.1 Overview of the Digestive System
      3. 23.2 Digestive System Processes and Regulation
      4. 23.3 The Mouth, Pharynx, and Esophagus
      5. 23.4 The Stomach
      6. 23.5 The Small and Large Intestines
      7. 23.6 Accessory Organs in Digestion: The Liver, Pancreas, and Gallbladder
      8. 23.7 Chemical Digestion and Absorption: A Closer Look
      9. Key Terms
      10. Chapter Review
      11. Interactive Link Questions
      12. Review Questions
      13. Critical Thinking Questions
    3. 24 Metabolism and Nutrition
      1. Introduction
      2. 24.1 Overview of Metabolic Reactions
      3. 24.2 Carbohydrate Metabolism
      4. 24.3 Lipid Metabolism
      5. 24.4 Protein Metabolism
      6. 24.5 Metabolic States of the Body
      7. 24.6 Energy and Heat Balance
      8. 24.7 Nutrition and Diet
      9. Key Terms
      10. Chapter Review
      11. Review Questions
      12. Critical Thinking Questions
    4. 25 The Urinary System
      1. Introduction
      2. 25.1 Physical Characteristics of Urine
      3. 25.2 Gross Anatomy of Urine Transport
      4. 25.3 Gross Anatomy of the Kidney
      5. 25.4 Microscopic Anatomy of the Kidney
      6. 25.5 Physiology of Urine Formation
      7. 25.6 Tubular Reabsorption
      8. 25.7 Regulation of Renal Blood Flow
      9. 25.8 Endocrine Regulation of Kidney Function
      10. 25.9 Regulation of Fluid Volume and Composition
      11. 25.10 The Urinary System and Homeostasis
      12. Key Terms
      13. Chapter Review
      14. Review Questions
      15. Critical Thinking Questions
    5. 26 Fluid, Electrolyte, and Acid-Base Balance
      1. Introduction
      2. 26.1 Body Fluids and Fluid Compartments
      3. 26.2 Water Balance
      4. 26.3 Electrolyte Balance
      5. 26.4 Acid-Base Balance
      6. 26.5 Disorders of Acid-Base Balance
      7. Key Terms
      8. Chapter Review
      9. Interactive Link Questions
      10. Review Questions
      11. Critical Thinking Questions
  7. Unit 6: Human Development and the Continuity of Life
    1. 27 The Reproductive System
      1. Introduction
      2. 27.1 Anatomy and Physiology of the Male Reproductive System
      3. 27.2 Anatomy and Physiology of the Female Reproductive System
      4. 27.3 Development of the Male and Female Reproductive Systems
      5. Key Terms
      6. Chapter Review
      7. Interactive Link Questions
      8. Review Questions
      9. Critical Thinking Questions
    2. 28 Development and Inheritance
      1. Introduction
      2. 28.1 Fertilization
      3. 28.2 Embryonic Development
      4. 28.3 Fetal Development
      5. 28.4 Maternal Changes During Pregnancy, Labor, and Birth
      6. 28.5 Adjustments of the Infant at Birth and Postnatal Stages
      7. 28.6 Lactation
      8. 28.7 Patterns of Inheritance
      9. Key Terms
      10. Chapter Review
      11. Interactive Link Questions
      12. Review Questions
      13. Critical Thinking Questions
  8. References
  9. Index
By the end of this section, you will be able to:
  • Identify and distinguish between the types of connective tissue: proper, supportive, and fluid
  • Explain the functions of connective tissues

As may be obvious from its name, one of the major functions of connective tissue is to connect tissues and organs. Unlike epithelial tissue, which is composed of cells closely packed with little or no extracellular space in between, connective tissue cells are dispersed in a matrix. The matrix usually includes a large amount of extracellular material produced by the connective tissue cells that are embedded within it. The matrix plays a major role in the functioning of this tissue. The major component of the matrix is a ground substance often crisscrossed by protein fibers. This ground substance is usually a fluid, but it can also be mineralized and solid, as in bones. Connective tissues come in a vast variety of forms, yet they typically have in common three characteristic components: cells, large amounts of amorphous ground substance, and protein fibers. The amount and structure of each component correlates with the function of the tissue, from the rigid ground substance in bones supporting the body to the inclusion of specialized cells; for example, a phagocytic cell that engulfs pathogens and also rids tissue of cellular debris.

Functions of Connective Tissues

Connective tissues perform many functions in the body, but most importantly, they support and connect other tissues; from the connective tissue sheath that surrounds muscle cells, to the tendons that attach muscles to bones, and to the skeleton that supports the positions of the body. Protection is another major function of connective tissue, in the form of fibrous capsules and bones that protect delicate organs and, of course, the skeletal system. Specialized cells in connective tissue defend the body from microorganisms that enter the body. Transport of fluid, nutrients, waste, and chemical messengers is ensured by specialized fluid connective tissues, such as blood and lymph. Adipose cells store surplus energy in the form of fat and contribute to the thermal insulation of the body.

Embryonic Connective Tissue

All connective tissues derive from the mesodermal layer of the embryo (see Figure 4.3). The first connective tissue to develop in the embryo is mesenchyme, the stem cell line from which all connective tissues are later derived. Clusters of mesenchymal cells are scattered throughout adult tissue and supply the cells needed for replacement and repair after a connective tissue injury. A second type of embryonic connective tissue forms in the umbilical cord, called mucous connective tissue or Wharton’s jelly. This tissue is no longer present after birth, leaving only scattered mesenchymal cells throughout the body.

Classification of Connective Tissues

The three broad categories of connective tissue are classified according to the characteristics of their ground substance and the types of fibers found within the matrix (Table 4.1). Connective tissue proper includes loose connective tissue and dense connective tissue. Both tissues have a variety of cell types and protein fibers suspended in a viscous ground substance. Dense connective tissue is reinforced by bundles of fibers that provide tensile strength, elasticity, and protection. In loose connective tissue, the fibers are loosely organized, leaving large spaces in between. Supportive connective tissue—bone and cartilage—provide structure and strength to the body and protect soft tissues. A few distinct cell types and densely packed fibers in a matrix characterize these tissues. In bone, the matrix is rigid and described as calcified because of the deposited calcium salts. In fluid connective tissue, in other words, lymph and blood, various specialized cells circulate in a watery fluid containing salts, nutrients, and dissolved proteins.

Connective Tissue Examples
Connective tissue proper Supportive connective tissue Fluid connective tissue
Loose connective tissue
  • Areolar
  • Adipose
  • Reticular
Cartilage
  • Hyaline
  • Fibrocartilage
  • Elastic
Blood
Dense connective tissue
  • Regular elastic
  • Irregular elastic
Bones
  • Compact bone
  • Cancellous bone
Lymph
Table 4.1

Connective Tissue Proper

Fibroblasts are present in all connective tissue proper (Figure 4.12). Fibrocytes, adipocytes, and mesenchymal cells are fixed cells, which means they remain within the connective tissue. Other cells move in and out of the connective tissue in response to chemical signals. Macrophages, mast cells, lymphocytes, plasma cells, and phagocytic cells are found in connective tissue proper but are actually part of the immune system protecting the body.

The left image shows a diagram of connective tissue. As a whole, the connective tissue appears somewhat disorganized, with fibers and cells mixed together heterogeneously. There are many open spaces between the embedded elements, suggesting that the connective tissue is somewhat loosely packed. The thickest fibers are collagen fibers; the thinner fibers are elastic fibers. Both the collagen fibers and the elastic fibers crisscross randomly throughout the tissue. In addition, a net of reticular fibers appear in the upper part of the diagram. Two yellow and oval shaped adipocytes are embedded below the reticular fiber net, with a small dark nucleus squeezed into one corner of the cell. A mesenchymal cell is next to one of the adipocytes. The cell is rectangular and has four projections stemming from each corner of the cell. The projections appear to attach to the nearby collagen fibers. A fibroblast is located at the center of the diagram. The fibroblast appears similar to the mesenchymal cell, except that it is larger and has more projections. Finally, a white macrophage is in the lower right of the diagram. The macrophage is a white, oval shaped disc with a prominent nucleus. The right diagram is a micrograph of connective tissue. The tissue is mostly stained pink, however, the thick collagen fibers crisscrossing the tissue are white. Five adipocytes also appear white, except for their cell membrane and nucleus, which stained dark. A mesenchymal cell occupies the space between two adipocytes. It stains a very deep purple, but its shape is unclear in the micrograph. A fibrocyte is also visible as an oval shaped cell with a deep purple nucleus.
Figure 4.12 Connective Tissue Proper Fibroblasts produce this fibrous tissue. Connective tissue proper includes the fixed cells fibrocytes, adipocytes, and mesenchymal cells. LM × 400. (Micrograph provided by the Regents of University of Michigan Medical School © 2012)

Cell Types

The most abundant cell in connective tissue proper is the fibroblast. Polysaccharides and proteins secreted by fibroblasts combine with extra-cellular fluids to produce a viscous ground substance that, with embedded fibrous proteins, forms the extra-cellular matrix. As you might expect, a fibrocyte, a less active form of fibroblast, is the second most common cell type in connective tissue proper.

Adipocytes are cells that store lipids as droplets that fill most of the cytoplasm. There are two basic types of adipocytes: white and brown. The brown adipocytes store lipids as many droplets, and have high metabolic activity. In contrast, white fat adipocytes store lipids as a single large drop and are metabolically less active. Their effectiveness at storing large amounts of fat is witnessed in obese individuals. The number and type of adipocytes depends on the tissue and location, and vary among individuals in the population.

The mesenchymal cell is a multipotent adult stem cell. These cells can differentiate into any type of connective tissue cells needed for repair and healing of damaged tissue.

The macrophage cell is a large cell derived from a monocyte, a type of blood cell, which enters the connective tissue matrix from the blood vessels. The macrophage cells are an essential component of the immune system, which is the body’s defense against potential pathogens and degraded host cells. When stimulated, macrophages release cytokines, small proteins that act as chemical messengers. Cytokines recruit other cells of the immune system to infected sites and stimulate their activities. Roaming, or free, macrophages move rapidly by amoeboid movement, engulfing infectious agents and cellular debris. In contrast, fixed macrophages are permanent residents of their tissues.

The mast cell, found in connective tissue proper, has many cytoplasmic granules. These granules contain the chemical signals histamine and heparin. When irritated or damaged, mast cells release histamine, an inflammatory mediator, which causes vasodilation and increased blood flow at a site of injury or infection, along with itching, swelling, and redness you recognize as an allergic response. Like blood cells, mast cells are derived from hematopoietic stem cells and are part of the immune system.

Connective Tissue Fibers and Ground Substance

Three main types of fibers are secreted by fibroblasts: collagen fibers, elastic fibers, and reticular fibers. Collagen fiber is made from fibrous protein subunits linked together to form a long and straight fiber. Collagen fibers, while flexible, have great tensile strength, resist stretching, and give ligaments and tendons their characteristic resilience and strength. These fibers hold connective tissues together, even during the movement of the body.

Elastic fiber contains the protein elastin along with lesser amounts of other proteins and glycoproteins. The main property of elastin is that after being stretched or compressed, it will return to its original shape. Elastic fibers are prominent in elastic tissues found in skin and the elastic ligaments of the vertebral column.

Reticular fiber is also formed from the same protein subunits as collagen fibers; however, these fibers remain narrow and are arrayed in a branching network. They are found throughout the body, but are most abundant in the reticular tissue of soft organs, such as liver and spleen, where they anchor and provide structural support to the parenchyma (the functional cells, blood vessels, and nerves of the organ).

All of these fiber types are embedded in ground substance. Secreted by fibroblasts, ground substance is made of polysaccharides, specifically hyaluronic acid, and proteins. These combine to form a proteoglycan with a protein core and polysaccharide branches. The proteoglycan attracts and traps available moisture forming the clear, viscous, colorless matrix you now know as ground substance.

Loose Connective Tissue

Loose connective tissue is found between many organs where it acts both to absorb shock and bind tissues together. It allows water, salts, and various nutrients to diffuse through to adjacent or imbedded cells and tissues.

Adipose tissue consists mostly of fat storage cells, with little extracellular matrix (Figure 4.13). A large number of capillaries allow rapid storage and mobilization of lipid molecules. White adipose tissue is most abundant. It can appear yellow and owes its color to carotene and related pigments from plant food. White fat contributes mostly to lipid storage and can serve as insulation from cold temperatures and mechanical injuries. White adipose tissue can be found protecting the kidneys and cushioning the back of the eye. Brown adipose tissue is more common in infants, hence the term “baby fat.” In adults, there is a reduced amount of brown fat and it is found mainly in the neck and clavicular regions of the body. The many mitochondria in the cytoplasm of brown adipose tissue help explain its efficiency at metabolizing stored fat. Brown adipose tissue is thermogenic, meaning that as it breaks down fats, it releases metabolic heat, rather than producing adenosine triphosphate (ATP), a key molecule used in metabolism.

Image A shows a collection of yellow adipocytes that do not have a consistent shape or size, however, most have the general appearance of a kernel of corn with a wide end that tapers to a point. Each adipocyte has a nucleus occupying a small area on one side of the cell. Nothing else is visible within the cells. Image B shows a micrograph of adipose tissue. Here, the adipocytes are stained purple. However, only their edges and their nuclei stain, giving the adipose tissue a honeycomb appearance. The adipocytes in the micrograph are large and round, but still show a diversity of shapes and sizes. The nucleus appears as a dark staining area very close to the cell membrane.
Figure 4.13 Adipose Tissue This is a loose connective tissue that consists of fat cells with little extracellular matrix. It stores fat for energy and provides insulation. LM × 800. (Micrograph provided by the Regents of University of Michigan Medical School © 2012)

Areolar tissue shows little specialization. It contains all the cell types and fibers previously described and is distributed in a random, web-like fashion. It fills the spaces between muscle fibers, surrounds blood and lymph vessels, and supports organs in the abdominal cavity. Areolar tissue underlies most epithelia and represents the connective tissue component of epithelial membranes, which are described further in a later section.

Reticular tissue is a mesh-like, supportive framework for soft organs such as lymphatic tissue, the spleen, and the liver (Figure 4.14). Reticular cells produce the reticular fibers that form the network onto which other cells attach. It derives its name from the Latin reticulus, which means “little net.”

This figure shows reticular tissue alongside a micrograph. The diagram shows a series of small, oval cells embedded in a yellowish matrix. Thin reticular fibers spread and crisscross throughout the matrix. In the micrograph, the reticular fibers are thin, dark, and seem to travel between the many deeply stained cells.
Figure 4.14 Reticular Tissue This is a loose connective tissue made up of a network of reticular fibers that provides a supportive framework for soft organs. LM × 1600. (Micrograph provided by the Regents of University of Michigan Medical School © 2012)

Dense Connective Tissue

Dense connective tissue contains more collagen fibers than does loose connective tissue. As a consequence, it displays greater resistance to stretching. There are two major categories of dense connective tissue: regular and irregular. Dense regular connective tissue fibers are parallel to each other, enhancing tensile strength and resistance to stretching in the direction of the fiber orientations. Ligaments and tendons are made of dense regular connective tissue, but in ligaments not all fibers are parallel. Dense regular elastic tissue contains elastin fibers in addition to collagen fibers, which allows the ligament to return to its original length after stretching. The ligaments in the vocal folds and between the vertebrae in the vertebral column are elastic.

In dense irregular connective tissue, the direction of fibers is random. This arrangement gives the tissue greater strength in all directions and less strength in one particular direction. In some tissues, fibers crisscross and form a mesh. In other tissues, stretching in several directions is achieved by alternating layers where fibers run in the same orientation in each layer, and it is the layers themselves that are stacked at an angle. The dermis of the skin is an example of dense irregular connective tissue rich in collagen fibers. Dense irregular elastic tissues give arterial walls the strength and the ability to regain original shape after stretching (Figure 4.15).

Part A shows a diagram of regular dense connective tissue alongside a micrograph. The tissue is composed of parallel, thread-like collagen fibers running vertically through the diagram. Between the vertical fibers, several dark, oval shaped fibroblast nuclei are visible. In the micrograph, the whitish collagen strands run horizontally. Several dark purple fibroblast nuclei are embedded in the lightly stained matrix. Part B shows a diagram of irregular dense connective tissue on the left and a micrograph on the right. In the diagram, the collagen fibers are arranged in bundles that curve and loop throughout the tissue. The fibers within a bundle run parallel to each other, but separate bundles crisscross throughout the tissue. Because of this, the irregular dense connective tissue appears less organized than the regular dense connective tissue. This is also evident in the micrograph, where the white collagen bundles radiate throughout the micrograph in all directions. The fibroblasts are visible as red stained cells with dark purple nuclei.
Figure 4.15 Dense Connective Tissue (a) Dense regular connective tissue consists of collagenous fibers packed into parallel bundles. (b) Dense irregular connective tissue consists of collagenous fibers interwoven into a mesh-like network. From top, LM × 1000, LM × 200. (Micrographs provided by the Regents of University of Michigan Medical School © 2012)

Disorders of the...

Connective Tissue: Tendinitis

Your opponent stands ready as you prepare to hit the serve, but you are confident that you will smash the ball past your opponent. As you toss the ball high in the air, a burning pain shoots across your wrist and you drop the tennis racket. That dull ache in the wrist that you ignored through the summer is now an unbearable pain. The game is over for now.

After examining your swollen wrist, the doctor in the emergency room announces that you have developed wrist tendinitis. She recommends icing the tender area, taking non-steroidal anti-inflammatory medication to ease the pain and to reduce swelling, and complete rest for a few weeks. She interrupts your protests that you cannot stop playing. She issues a stern warning about the risk of aggravating the condition and the possibility of surgery. She consoles you by mentioning that well known tennis players such as Venus and Serena Williams and Rafael Nadal have also suffered from tendinitis related injuries.

What is tendinitis and how did it happen? Tendinitis is the inflammation of a tendon, the thick band of fibrous connective tissue that attaches a muscle to a bone. The condition causes pain and tenderness in the area around a joint. On rare occasions, a sudden serious injury will cause tendinitis. Most often, the condition results from repetitive motions over time that strain the tendons needed to perform the tasks.

Persons whose jobs and hobbies involve performing the same movements over and over again are often at the greatest risk of tendinitis. You hear of tennis and golfer’s elbow, jumper's knee, and swimmer’s shoulder. In all cases, overuse of the joint causes a microtrauma that initiates the inflammatory response. Tendinitis is routinely diagnosed through a clinical examination. In case of severe pain, X-rays can be examined to rule out the possibility of a bone injury. Severe cases of tendinitis can even tear loose a tendon. Surgical repair of a tendon is painful. Connective tissue in the tendon does not have abundant blood supply and heals slowly.

While older adults are at risk for tendinitis because the elasticity of tendon tissue decreases with age, active people of all ages can develop tendinitis. Young athletes, dancers, and computer operators; anyone who performs the same movements constantly is at risk for tendinitis. Although repetitive motions are unavoidable in many activities and may lead to tendinitis, precautions can be taken that can lessen the probability of developing tendinitis. For active individuals, stretches before exercising and cross training or changing exercises are recommended. For the passionate athlete, it may be time to take some lessons to improve technique. All of the preventive measures aim to increase the strength of the tendon and decrease the stress put on it. With proper rest and managed care, you will be back on the court to hit that slice-spin serve over the net.

Interactive Link

Watch this animation to learn more about tendonitis, a painful condition caused by swollen or injured tendons.

Supportive Connective Tissues

Two major forms of supportive connective tissue, cartilage and bone, allow the body to maintain its posture and protect internal organs.

Cartilage

The distinctive appearance of cartilage is due to polysaccharides called chondroitin sulfates, which bind with ground substance proteins to form proteoglycans. Embedded within the cartilage matrix are chondrocytes, or cartilage cells, and the space they occupy are called lacunae (singular = lacuna). A layer of dense irregular connective tissue, the perichondrium, encapsulates the cartilage. Cartilaginous tissue is avascular, thus all nutrients need to diffuse through the matrix to reach the chondrocytes. This is a factor contributing to the very slow healing of cartilaginous tissues.

The three main types of cartilage tissue are hyaline cartilage, fibrocartilage, and elastic cartilage (Figure 4.16). Hyaline cartilage, the most common type of cartilage in the body, consists of short and dispersed collagen fibers and contains large amounts of proteoglycans. Under the microscope, tissue samples appear clear. The surface of hyaline cartilage is smooth. Both strong and flexible, it is found in the rib cage and nose and covers bones where they meet to form moveable joints. It makes up a template of the embryonic skeleton before bone formation. A plate of hyaline cartilage at the ends of bone allows continued growth until adulthood. Fibrocartilage is tough because it has thick bundles of collagen fibers dispersed through its matrix. Menisci in the knee joint and the intervertebral discs are examples of fibrocartilage. Elastic cartilage contains elastic fibers as well as collagen and proteoglycans. This tissue gives rigid support as well as elasticity. Tug gently at your ear lobes, and notice that the lobes return to their initial shape. The external ear contains elastic cartilage.

Part A of this diagram is a drawing and a micrograph of hyaline cartilage. The cartilage contains chondrocytes encapsulated in lacunae. Several of the lacunae are joined into groups or small stacks and embedded in the surrounding matrix. The micrograph shows the lacunae as white rings surrounding the purple staining chondrocytes. Some occur as joined pairs while others are embedded singly within the pink staining matrix. Image B shows a diagram and a micrograph of fibrocartilage that contains many fine collagen fibers embedded in the matrix. The collagen fibers are roughly parallel to each but run through the matrix in a wavy fashion. There are also four round chondrocyte cells embedded within the matrix. In the micrograph, the matrix is shaded red and the collagen fibers are visible in white. The lacunae are clearly visible as a faint purple ring containing several dark purple chondrocytes. Part C shows a diagram and micrograph of elastic cartilage. In the diagram, fine elastic fibers are seen crisscrossing the matrix. Many of the elastic fibers branch off from each other, unlike the collagen fibers depicted in parts A and B. The lacunae are clearly visible as white rings containing stained chondrocytes. The fibers stain deeply in this micrograph and can been seen crisscrossing through the tissue.
Figure 4.16 Types of Cartilage Cartilage is a connective tissue consisting of collagenous fibers embedded in a firm matrix of chondroitin sulfates. (a) Hyaline cartilage provides support with some flexibility. The example is from dog tissue. (b) Fibrocartilage provides some compressibility and can absorb pressure. (c) Elastic cartilage provides firm but elastic support. From top, LM × 300, LM × 1200, LM × 1016. (Micrographs provided by the Regents of University of Michigan Medical School © 2012)

Bone

Bone is the hardest connective tissue. It provides protection to internal organs and supports the body. Bone’s rigid extracellular matrix contains mostly collagen fibers embedded in a mineralized ground substance containing hydroxyapatite, a form of calcium phosphate. Both components of the matrix, organic and inorganic, contribute to the unusual properties of bone. Without collagen, bones would be brittle and shatter easily. Without mineral crystals, bones would flex and provide little support. Osteocytes, bone cells like chondrocytes, are located within lacunae. The histology of transverse tissue from long bone shows a typical arrangement of osteocytes in concentric circles around a central canal. Bone is a highly vascularized tissue. Unlike cartilage, bone tissue can recover from injuries in a relatively short time.

Cancellous bone looks like a sponge under the microscope and contains empty spaces between trabeculae, or arches of bone proper. It is lighter than compact bone and found in the interior of some bones and at the end of long bones. Compact bone is solid and has greater structural strength.

Fluid Connective Tissue

Blood and lymph are fluid connective tissues. Cells circulate in a liquid extracellular matrix. The formed elements circulating in blood are all derived from hematopoietic stem cells located in bone marrow (Figure 4.17). Erythrocytes, red blood cells, transport oxygen and some carbon dioxide. Leukocytes, white blood cells, are responsible for defending against potentially harmful microorganisms or molecules. Platelets are cell fragments involved in blood clotting. Some white blood cells have the ability to cross the endothelial layer that lines blood vessels and enter adjacent tissues. Nutrients, salts, and wastes are dissolved in the liquid matrix and transported through the body.

Lymph contains a liquid matrix and white blood cells. Lymphatic capillaries are extremely permeable, allowing larger molecules and excess fluid from interstitial spaces to enter the lymphatic vessels. Lymph drains into blood vessels, delivering molecules to the blood that could not otherwise directly enter the bloodstream. In this way, specialized lymphatic capillaries transport absorbed fats away from the intestine and deliver these molecules to the blood.

This micrograph of a blood smear shows a group of red blood cells and a single white blood cell. The red cells are small discs which have a slight depression at their centers with no nuclei present. The white blood cell is larger and more darkly stained and has a large, prominent nucleus that is also darkly stained.
Figure 4.17 Blood: A Fluid Connective Tissue Blood is a fluid connective tissue containing erythrocytes and various types of leukocytes that circulate in a liquid extracellular matrix. LM × 1600. (Micrograph provided by the Regents of University of Michigan Medical School © 2012)

Interactive Link

View the University of Michigan Webscope to explore the tissue sample in greater detail.

Interactive Link

Visit this link to test your connective tissue knowledge with this 10-question quiz. Can you name the 10 tissue types shown in the histology slides?

Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/anatomy-and-physiology/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/anatomy-and-physiology/pages/1-introduction
Citation information

© Apr 25, 2013 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.